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Abstract: Successful investing is challenging, since stock prices are difficult to consistently 24 

forecast. Recent neuroimaging evidence suggests, however, that activity in brain regions 25 

associated with anticipatory affect may not only predict individual choice, but also forecast 26 

aggregate behavior out-of-sample. Thus, in two experiments, we specifically tested whether 27 

anticipatory affective brain activity in healthy humans could forecast aggregate changes in stock 28 

prices. Using Functional Magnetic Resonance Imaging (FMRI), we found in a first experiment 29 

(n=34, 6 females; 140 trials per subject) that Nucleus Accumbens (NAcc) activity forecast stock 30 

price direction, whereas Anterior Insula (AIns) activity forecast stock price inflections. In a 31 

second preregistered replication experiment (n=39, 7 females) that included different subjects and 32 

stocks, AIns activity still forecast stock price inflections. Importantly, AIns activity forecast stock 33 

price movement even when choice behavior and conventional stock indicators did not (e.g., 34 

previous stock price movements), and classifier analysis indicated that forecasts based on brain 35 

activity should generalize to other markets. By demonstrating that AIns activity might serve as a 36 

leading indicator of stock price inflections, these findings imply that neural activity associated 37 

with anticipatory affect may extend to forecasting aggregate choice in dynamic and competitive 38 

environments such as stock markets.  39 

 40 

Significance Statement 41 

Many try but fail to consistently forecast changes in stock prices. New evidence, however, 42 

suggests not only that anticipatory affective brain activity may not only predict individual choice, 43 

but also may forecast aggregate choice. Assuming that stock prices index collective choice, we 44 

tested whether brain activity sampled during assessment of stock prices could forecast subsequent 45 

changes in the prices of those stocks. In two neuroimaging experiments, a combination of 46 

previous stock price movements and brain activity in a region implicated in processing 47 

uncertainty and arousal forecast next-day stock price changes – even when behavior did not. 48 
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These findings challenge traditional assumptions of market efficiency by implying that 49 

neuroimaging data might reveal “hidden information” capable of foreshadowing stock price 50 

dynamics. 51 

  52 
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Although investors strive to forecast changes in stock prices, most fail to consistently do so. 53 

Accordingly, traditional finance theory implies that investors should not be able to reliably 54 

forecast stock prices (Fama, 1970), although behavioral finance researchers have identified 55 

exceptions (Farmer and Lo, 2002; Barberis and Thaler, 2003; Shiller, 2003; Hirshleifer, 2015). 56 

Forecasting stock prices might prove challenging for many reasons, including random variation in 57 

systematic preferences of investors, as well as arbitrage of naïve investors’ systematic preferences 58 

by more sophisticated investors (Camerer, 2003; Barberis, 2018).  59 

 60 

Despite the challenge of translating individual predictions into aggregate forecasts, recent 61 

neuroimaging work suggests that some neural predictors of individual choice might further scale 62 

to forecast aggregate choice (Falk et al., 2012; Knutson and Genevsky, 2018). For instance, 63 

average group neural activity in laboratory samples has been used to forecast aggregate market 64 

responses to music clips (Berns and Moore, 2012), advertisements (Venkatraman et al., 2015), 65 

microloan appeals (Genevsky and Knutson, 2015), crowdfunding proposals (Genevsky et al., 66 

2017), news summaries (Scholz et al., 2017), and video clips (Tong et al., 2020). In some cases, 67 

experimentally measured neural activity can even forecast aggregate choice better than stated 68 

preferences or behavioral choices. These collected findings imply that some neural processes 69 

occurring prior to individual choices may generalize to forecast others’ choices– and may do so 70 

more robustly than other neural processes or even behavior (Knutson & Genevsky, 2018).  71 

 72 

We sought to extend this “neuroforecasting” approach in a critical new direction by examining 73 

whether experimentally measured brain activity can forecast changes in stock prices. We 74 

specifically tested whether brain activity sampled from a group of individuals assessing and 75 

investing in stocks might reveal useful information about impending stock price changes. 76 

Forecasting stock price dynamics presents a significant new challenge, since stock prices reflect 77 
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not only the aggregate choices of individuals (in which increased purchases drive prices up, while 78 

increased sales drive prices down), but also dynamic interactions and competition between 79 

individuals (De Martino et al., 2013). Understanding whether neural processes forecast stock 80 

price dynamics might yield insights into which neural mechanisms generalize across individuals 81 

to forecast aggregate choice in general, and further test whether brain activity extends to forecast 82 

aggregate behavior in dynamic and competitive environments like stock markets.  83 

 84 

Building from the notion that anticipatory affect can precede and predict risky choice in 85 

individuals (Bechara et al., 1996; Loewenstein et al., 2001; Knutson and Greer, 2008), we 86 

hypothesized that sampled brain activity associated with positive aroused affect and approach 87 

behavior (i.e., Nucleus Accumbens or NAcc activity) would forecast increased demand for stocks 88 

and associated price increases (i.e., price direction), but that brain activity associated with 89 

negative or generally aroused affect and avoidance behavior (i.e., Anterior Insula or AIns activity) 90 

would instead forecast decreased or changing demand for stocks and associated price decreases or 91 

changes (i.e. price inflections) (Paulus et al., 2003; Kuhnen and Knutson, 2005; Knutson and 92 

Huettel, 2015). Further, and consistent with a “partial scaling” account (Knutson and Genevsky, 93 

2018), we hypothesized that activity in deeper brain regions associated with anticipatory affect 94 

might forecast aggregate choice – even when activity in more cortical regions associated with 95 

value integration (such as the Medial PreFrontal Cortex or MPFC) and subsequent choice 96 

behavior do not. We tested these hypotheses first in a neuroimaging experiment, and then 97 

examined the replicability and generalizability of those findings in a second preregistered 98 

neuroimaging experiment.  99 

 100 

Materials and Methods 101 

Experimental design  102 
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Subjects 103 

41 healthy subjects were recruited and scanned for experiment 1 and 49 healthy subjects were 104 

recruited and scanned for (preregistered) experiment 2. The sample size for experiment 1 was 105 

based on a review of previous neuroforecasting research (Knutson and Genevsky, 2018). 106 

Exclusion criteria included typical magnetic resonance safety criteria (e.g., no metal in the body 107 

or fear of enclosed spaces), as well as history of psychotropic drug use, brain damage, alcoholism, 108 

substance use, or cardiac medications. For experiment 1, six subjects were excluded for excessive 109 

head motion during scanning (i.e. > 4 mm of movement from one image volume acquisition to the 110 

next) and one subject was excluded due to incomplete data acquisition, leaving a total of 34 111 

subjects for analysis (6 females; age range = 22-43 years, M = 29.1, SD = 5.35). For experiment 112 

2, seven subjects were excluded for excessive head motion during scanning and three subjects 113 

were excluded due to incomplete data acquisition, leaving a total of 39 subjects for analysis (7 114 

females; age range 18-47 years, M = 27.5, SD = 6.14). Most subjects were students at Stanford 115 

University, no expertise in financial investing was required, and subjects reported that they either 116 

did not invest at all or only invested in personal (not professional) accounts. Consistent with the 117 

sex imbalance typically observed in professional traders, more males than females volunteered.  118 

 119 

Subjects received $20 per hour for participating, as well as the opportunity to keep any money 120 

they gained based on their performance in the asset pricing task and an unrelated subsequent 121 

financial decision-making task (not described here). Subjects earned an average of $10.40 (SD = 122 

$0.36) per stock in experiment 1 and $10.29 (SD = $0.41) per stock in experiment 2 (which 123 

included their $10.00 starting endowment for each stock). All procedures were carried out as 124 

approved by the Institutional Review Board on Medical Human Subjects of Stanford University. 125 

 126 

Procedure 127 
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After providing informed consent, subjects read the instructions and completed several practice 128 

trials for the experimental task of interest (i.e., the Asset Pricing Task; described below) as well as 129 

practice trials for a subsequent and different financial decision-making task. In experiment 1, the 130 

second task was the Behavioral Investment Allocation Strategy (BIAS) task (Kuhnen and 131 

Knutson, 2005), and in experiment 2, the second task was a gambling task (Leong et al., 2016) – 132 

findings related to these tasks will be described elsewhere. Before and after scanning, subjects 133 

completed questionnaires assessing socio-demographic information and individual differences in 134 

affective experience and cognitive abilities (adapted from (Knutson et al., 2011). 135 

 136 

Asset Pricing Task 137 

To assess brain activity related to stock price dynamics, we designed a novel Asset Pricing Task 138 

(APT) suitable for use with Functional Magnetic Resonance Imaging (FMRI). The APT displays 139 

trend lines that sequentially and dynamically depict historical prices of real stocks. After each 140 

daily price update, subjects chose whether to either invest in the displayed stock or not (Fig. 1). 141 

Stock trend lines depicted daily closing prices and came from 14 different stocks selected from 142 

the S&P 500 index and extracted from online finance data (listed on finance.yahoo.com). For 143 

each experiment, we randomly selected a 30-day trading period in 2015 (October 28 – December 144 

9 of 2015 for experiment 1 and March 4 – April 15 of 2015 for experiment 2), which represented 145 

recent markets relative to the time when the experiments were conducted (i.e., in 2016). For 146 

experiment 1, 14 stocks were randomly selected from the S&P 500 index. For experiment 2, 14 147 

stocks were pseudo-randomly selected from the S&P 500 index to exclude stocks used in 148 

experiment 1, as well as to avoid incidental autocorrelation within and between stocks. 149 

Specifically, to select stocks for experiment 2, we estimated an ordinary least squares regression 150 

model for each stock based on the stock prices of the selected 30-day trading period. Then, stocks 151 

were divided into 6 bins based on their slope (i.e., beta value of the regression model was greater 152 
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or less than 0) and volatility (i.e., residual sum of squares of the regression model was either low, 153 

medium, or high). Next, 2 or 3 stocks were randomly selected from each of these bins to yield a 154 

random but stratified set of 14 stocks that varied in terms of slope and volatility. Stocks that were 155 

included in experiment 1 were excluded from selection in experiment 2. In both experiments, 156 

stock prices were converted to Z-scores to fit their trend lines on a common vertical value axis for 157 

display. Importantly, subjects were not informed about which stock identities or time periods 158 

were sampled.  159 

 160 

During the task, subjects viewed sequentially updating trend lines corresponding to each of the 14 161 

stocks (10 trials per stock). Stock price trend lines were displayed using a “rolling window” 162 

format, such that each of the 10 updates showed a trend line of 20 previous price updates along 163 

with the most recent update at its end (i.e., on the right). For each stock, subjects began with a 164 

$10.00 endowment, after which they made 10 consecutive investment choices after the displayed 165 

trend line was updated. Stocks were thus presented in 10-trial blocks, in one of two pseudo-166 

randomized orders. 167 

 168 

During each task trial, subjects initially saw a trend line reflecting the stock’s price history over 169 

20 previous updates (for 2s), followed by a choice prompt to indicate whether they wanted to 170 

either invest ($1.00) in that stock or not via button press (i.e., “Yes” or “No,” laterally spatially 171 

counterbalanced; 4s). If subjects invested and the stock price then increased, their balance 172 

increased by $1.00 but if subjects invested and the stock price then decreased, their balance 173 

decreased by $1.00. Thus, given an approximately even probability of stock price increasing or 174 

decreasing, the overall expected value of either investing or not investing on any trial was 175 

approximately $0.00. After choosing whether to invest or not, a feedback screen revealed whether 176 

the stock price had in fact increased or decreased, along with the amount of money the subject had 177 
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gained or lost as a consequence of their choice and their cumulative overall balance (2s). Finally, 178 

subjects visually fixated on a centrally-presented cross (2–6s) while awaiting the start of the next 179 

trial (Figure 1).  180 

 181 

At the end of each 10-trial block, subjects were instructed to imagine that they had an opportunity 182 

to invest in more shares of that stock as a trader, and to indicate their choice to buy, sell, or hold 183 

(i.e., neither to buy nor sell) the stock with a button press (6s). Subjects then rated their 184 

confidence in their choice (i.e., by selecting one of 0-25%, 26-50%, 51-75%, and 76-100% 185 

response options; 6s). These final choices and confidence ratings are not further analyzed here, 186 

since subjects’ trial-to-trial choices to invest provided the critical behavioral variables of interest 187 

for the current forecasting analyses. The total amount of money gained (or lost) during each block 188 

was added to (or subtracted from) subjects’ initial $10.00 endowment. At the end of each 189 

experiment, 4 of the 14 blocks were randomly selected, and the average payment over these 4 190 

blocks was added to subjects’ hourly base payment. Thus, both experiments employed no 191 

deception and were fully incentive compatible. The task was divided into 2 scanning runs 192 

including 7 stocks per run with trend lines of 10 price updates (trials) each, totaling 140 trials that 193 

lasted 32 minutes. 194 

 195 

Statistical analysis 196 

FMRI acquisition and analysis 197 

Images were acquired with a 3.0-T General Electric MRI scanner using a 32-channel head coil. 198 

Forty-six 2.9-mm-thick slices (in-plane resolution=2.9 mm, isotropic, no gap, interleaved 199 

acquisition) extended axially from the midpons superiorly to the crown of the skull to provide 200 

whole-brain coverage. Whole-brain functional scans were acquired with a T2*-weighted gradient-201 

echo pulse sequence (repetition time=2 s, echo time=25 ms, flip angle=77°). High-resolution 202 
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structural scans were acquired after functional scans with a T1-weighted pulse sequence 203 

(repetition time=7.2 ms, echo time=2.8 ms, flip angle=12°) to facilitate their localization and 204 

coregistration.  205 

 206 

Analyses of FMRI data were conducted using Analysis of Functional Neural Images (AFNI) 207 

software, version AFNI_18.0.25 (Cox, 1996). For preprocessing, voxel time series were 208 

concatenated across runs, sinc-interpolated to correct for non-simultaneous slice acquisition 209 

within each volume, motion corrected, spatially smoothed to minimize effects of anatomical 210 

variability while retaining sufficient resolution to visualize structures of interest (4-mm full-width 211 

at half-maximum kernel), normalized to percentage signal change with respect to each voxel’s 212 

average over the entire task, and high-pass filtered to omit frequencies with periods greater than 213 

90 s. 214 

 215 

To extract brain data for testing the critical predictions, targeted analyses focused on data 216 

extracted from three predefined Volumes Of Interest (VOIs) whose activity previously predicted 217 

individual choice in studies of financial risk-taking (Kuhnen and Knutson, 2005), as well as 218 

forecast market-level behavior (Knutson and Genevsky, 2018). These meta-analytically derived 219 

(Knutson and Greer, 2008) VOIs specifically centered on predefined bilateral foci (8 mm 220 

diameter spheres) in the NAcc (Talairach focus: ±10,+12,−2), the AIns (Talairach focus: 221 

±28,+18,–5), and the Medial PreFrontal Cortex (MPFC; Talairach focus: ±4,+45,0). Activity time 222 

courses were first normalized over time within each voxel, and then averaged over voxels 223 

comprising each VOI. For forecasting analyses, brain activity was averaged that corresponded to 224 

the presentation of the stock price update, lagged for the hemodynamic response by 6 seconds 225 

(i.e., the fourth 2 sec volume acquisition after trial onset) before being entered into models. 226 

Activity exceeding four standard deviations or more was omitted prior to analyses, in addition to 227 
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trials in which stock prices remained stable across two days (4 trials in experiment 1, and 2 trials 228 

in experiment 2) since they could not be classified as displaying a price increase or decrease. 229 

 230 

To test whether neural activity could forecast stock price dynamics, logistic regression analyses 231 

that forecast next-day aggregate stock price movement then were conducted on data clustered by 232 

stock and averaged over subjects (i.e., 10 price updates per stock averaged over all subjects in the 233 

sample; all regression analyses were conducted using the lme4 package version 1.1-21 of the R 234 

statistical language (R Team, 2018)). These models included fixed effects of: (1) stock indicators 235 

(Market model); (2) average choice to invest or not (Behavioral model); (3) neural activity 236 

averaged over VOIs (the NAcc, AIns, and MPFC) in response to presentation of stock price 237 

updates (Neural model); and (4) all of these components combined (Combined model). For the 238 

Market and Combined models, stock indicators included stock price movement on the previous 239 

day (i.e., price increase versus decrease), and the slope and volatility indicators of each updated 240 

trend line. To calculate slope and volatility indicators, we estimated an ordinary least squares 241 

regression model for each updated trend line (10 updates per stock, so 10 regression models per 242 

stock). The slope and volatility indicators reflected respectively the beta and residual sum of 243 

squares of each regression model that was estimated using the updated trend line presented on a 244 

given trial. For outcome variables, price direction indexed continuation (i.e., the price increased 245 

after increasing on the previous trial or decreased after decreasing on the previous trial) whereas 246 

price inflection indexed reversals (i.e. the price decreased after increasing on the previous trial or 247 

increased after decreasing on the previous trial). Likelihood ratio tests were used to test whether 248 

the Combined model performed significantly better or worse than the other models (using the 249 

lrtest function of R’s lmtest package version 0.9-34).  250 

 251 
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To establish whether neural forecasts could generalize across markets, we trained a linear support-252 

vector-machine classifier on the behavioral, neural, and stock indicator data from experiment 1 253 

(or experiment 2), and tested whether this classifier could predict stock price movement of the 254 

stocks used in experiment 2 (or experiment 1) above chance (using the e1071 R package, version 255 

1.7-2 (R Core Team, 2018)). Classifiers were trained on the Combined model as well as on a 256 

reduced model that only included anticipatory AIns activity, stock price movement on the 257 

previous trial, and their interaction. Since subsequent stock price movement was the outcome 258 

variable, data were downsampled to include 50% increases and 50% decreases of stock prices. 259 

Binomial tests then evaluated whether classifiers could forecast stock price movement out-of-260 

sample above chance (i.e., 50%, consistent with the Efficient Market Hypothesis). To further 261 

verify whether classifiers could forecast stock prices, classifiers were additionally trained on 262 

randomized stock prices of experiment 1 (or experiment 2) and then tested on non-randomized 263 

data of experiment 2 (or experiment 1), with the assumption that training on random data should 264 

produce a null result. Stock prices were randomized within each experiment 500 times to reduce 265 

estimation dependence on any particular randomized order. One-sample T-tests were used to 266 

compare whether test accuracies of models trained on randomized stock prices significantly 267 

exceeded chance.  268 

 269 

To verify task engagement and accurate selection of the predefined Volumes Of Interest, two 270 

whole-brain analyses were conducted. A first whole-brain analysis contrasted individual brain 271 

activity in response to different outcomes. For this analysis, increased NAcc activity was expected 272 

in response to gains (i.e., price increases after choosing to invest) as well as to avoided loss 273 

outcomes (i.e., counterfactual price decreases after choosing not to invest) (Kuhnen and Knutson, 274 

2005; Lohrenz et al., 2007). Whole-brain regression models analyzing neural activity in response 275 

to outcomes included fifteen regressors. Twelve regressors were not of interest (i.e., six regressors 276 
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indexing residual motion, two that indexed activity associated with cerebrospinal fluid and white 277 

matter intensity (Chang and Glover, 2009), and four that modeled each of the trial periods). Two 278 

orthogonal regressors of interest contrasted: (1) outcomes following investment choices (i.e., 279 

price increase and financial gain versus price decrease and financial loss after choices to invest; 280 

Onset: Feedback screen; Duration: 2s); and (2) outcomes following choices not to invest (i.e., 281 

price decrease or counterfactual gain versus price increase or counterfactual loss after choices not 282 

to invest; Onset: Feedback screen; Duration: 2s).  283 

 284 

A second whole-brain analysis confirmed that average activity in predicted regions forecast next-285 

day aggregate stock price movement. This model included twelve regressors that were not of 286 

interest, including regressors indexing: (1-6) residual motion; (7-8) activity associated with 287 

cerebrospinal fluid and white matter intensity (Chang and Glover, 2009); and (9-12) each of the 288 

trial periods. Two orthogonal regressors of interest contrasted upcoming stock price: (1) direction 289 

(price increase versus decrease; Onset: Stimulus screen; Duration: 4s); and (2) inflection (i.e., 290 

price direction changes versus continuation; Onset: Stimulus screen; Duration: 4s). For both 291 

whole-brain analyses, all regressors of interest were convolved with a single gamma-variate 292 

function modeling a canonical hemodynamic response function. Maps of t-statistics for the 293 

regressors of interest were transformed into maps of Z-scores, coregistered with structural maps, 294 

spatially normalized by warping to Talairach space, and resampled as 2-mm
3
 voxels. Whole-brain 295 

voxel-wise statistical thresholds were set to p<0.001, uncorrected, as suggested for exploratory 296 

characterization (Cox et al., 2017). A minimum cluster size of 18 contiguous, face-to-face 2.9-297 

mm
3
 voxels yielded a corrected whole-brain correction of p<0.05 (after applying the 3dClustSim 298 

algorithm to a gray matter mask from AFNI version 18.0.25). 299 

 300 

Code and data accessibility 301 
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The preregistration for Experiment 2 (https://osf.io/7pwnq), as well as relevant de-identified data 302 

and analytic code for both experiments (https://osf.io/yd8gn) are available on the Open Science 303 

Framework.  304 

 305 

Results  306 

In both experiments, we initially tested whether subjects’ choice behavior and stock indicators 307 

could forecast actual stock price dynamics. Next, we tested whether subjects’ brain activity could 308 

forecast actual stock price dynamics – both before and after controlling for relevant behavioral 309 

and stock indicators. Finally, we conducted whole-brain analyses to confirm subjects’ 310 

engagement and involvement of activity in predicted regions of interest in stock price movement 311 

forecasts.  312 

 313 

Choice behavior and stock indicators 314 

Consistent with traditional finance theory (e.g., the Efficient Market Hypothesis; Fama, 1970), we 315 

predicted that subjects’ choices would not forecast stock price movements. Logistic regression 316 

analyses accordingly indicated that subjects’ choice behavior could not significantly forecast 317 

next-day’s stock price (Behavioral model; Experiment 1: z=1.60, p=0.110; Experiment 2: z=0.51, 318 

p=0.609; Table 1). Additionally, behavioral data suggested that subjects behaved similarly across 319 

experiments (percentage of trials in which subjects chose to invest: Experiment 1: M=54.89%, 320 

SD=13.155; Experiment 2: M%=53.45 , SD%=13.04). Furthermore, subjects appeared to be 321 

similarly engaged across both experiments, since regression analyses predicting choice based on 322 

block number indicated that subjects’ choices did not change over time (i.e. behavior did not 323 

differ between all 14 ten-trial blocks: Experiment 1: t(441)=–1.23, β=–0.25, p=0.221; Experiment 324 

2: t(506)=0.91, β=0.020, p=0.336). 325 

 326 



 

 

15 

15 

Another logistic regression analysis including stock indicators as predictors (i.e., the Market 327 

model with stock slope, volatility, and price movement on the previous day as fixed effects) 328 

revealed that the previous day’s stock price direction inversely forecast the next day’s stock price 329 

direction in experiment 1 (Market model; z=–2.62, p=<0.009; Table 1). This negative 330 

autocorrelation in stock prices may have provided subjects with information to aid their 331 

predictions. Thus, we pseudo-randomly selected a set of stocks for experiment 2 to remove the 332 

potential confound of daily autocorrelation in prices (Market model; z=–0.60, p=0.548; Table 2; 333 

see Method) and thus support more robust verification of the generalizability of findings from 334 

experiment 1. 335 

 336 

Brain activity 337 

Volume of interest analyses: Forecasting stock price dynamics 338 

To test the critical hypothesis that brain activity could forecast stock price dynamics, further 339 

logistic regression analyses forecast next-day stock price movements using neural data alone 340 

(Neural model), as well as after combining neural variables with choice behavior and stock 341 

indicators (Combined model). 342 

 343 

In experiment 1, the Neural model indicated that average NAcc activity positively forecast next-344 

day stock price (z=2.20, p=0.028; Table 1). The Combined model indicated that included stock 345 

price slope, volatility, and direction, and choice with brain activity in the model revealed that 346 

prior price movement (z=–2.72, p=0.007), NAcc activity (z=2.14, p=0.032), and the interaction of 347 

prior price movement with AIns activity (z=–2.09, p =0.037) significantly forecast next-day stock 348 

price (Combined model; Table 1). This interaction also remained significant when including only 349 

AIns neural activity, prior price movement, and their interaction in a reduced model (z=–2.47, 350 

p=0.013). Direct model comparisons indicated that the Combined model forecast stock price 351 
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movements better than the Market model (Χ
2  

= 14.76, p=0.039), the Behavioral model (Χ
2  

= 352 

22.98, p=0.006), and the Neural model (Χ
2  

= 20.04, p=0.005).  353 

 354 

To decompose the interaction of price movement and AIns activity, we conducted post-hoc t-tests 355 

comparing AIns activity for price inflections (i.e., price decreased following an increase or vice-356 

versa) versus noninflections (i.e., price increased following an increase or vice-versa). Generally, 357 

AIns activity forecast price inflections versus noninflections (Minflection=–0.011, SDinflection=0.080, 358 

Mnoninflection=–0.039, SDnoninflection=0.070; t(120)=2.12, p=0.036; Figure 2). More specifically, AIns 359 

activity particularly forecast price decreases that followed increases rather than price decreases 360 

that followed decreases (Mincrease


decrease=–0.003, SDincrease


decrease=0.059, Mdecrease


decrease=–0.044 361 

SDdecrease


decrease=0.060; t(53)=2.70, p=0.009). Although both NAcc and AIns activity forecast 362 

stock price dynamics (in the Combined model) when choice did not (in the Behavioral model), 363 

the significant autocorrelation in the stock prices in this experiment (in the Market model) 364 

motivated a preregistered second experiment which included stock prices without autocorrelation. 365 

 366 

Unlike experiment 1, the Neural model in experiment 2 did not show significant associations of 367 

NAcc activity with stock price dynamics (Neural model: NAcc z=0.05, p=0.959; Table 2). Similar 368 

to experiment 1, though, the Combined model (which included choice, stock indicators, and 369 

neural data as predictors) in experiment 2 continued to show a significant interaction of prior 370 

price movement with AIns activity (z=–2.30, p=0.021; Table 2). This interaction again remained 371 

significant when including only AIns neural activity, prior price movement, and their interaction 372 

in a reduced model (z=–2.39, p=0.017). Direct model comparisons, however, did not reveal that 373 

the Combined model significantly outperformed the other models.  374 

 375 
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As in experiment 1, AIns activity generally forecast price inflections versus noninflections 376 

(Minflection=–0.011, SDinflection=0.065, Mno inflection=–0.037, SDno inflection=0.058; 377 

t(136)=2.59, p=0.011; Figure 2). Again, AIns activity specifically forecast price decreases that 378 

followed increases versus decreases that followed decreases (Mincrease


decrease=–0.011, 379 

SDincrease


decrease=0.055, Mdecrease


decrease=–0.041, SDdecrease


decrease=0.053; t(62)=2.31, p=0.024). 380 

Although the Combined model appeared to account for the most variance in experiment 2 (i.e., 381 

larger pseudo-R
2
), the fit was less robust than other models (i.e., larger AIC), suggesting potential 382 

overfitting. Therefore, we sought to more robustly test the generalizability of the interaction of 383 

AIns activity with previous trial price movement with classifier tests.  384 

 385 

Classifier tests of generalization 386 

A classifier trained on data from the Combined model of experiment 1 forecast stock price 387 

movement in data from experiment 2 with 59.42% accuracy (95% CI=±8.19%), which exceeded 388 

chance (or 50% accuracy; p=0.033, binomial test). A reduced version of this classifier trained on 389 

a model only including AIns neural activity, prior price movement, and their interaction in data 390 

from experiment 1 showed that this interaction continued to forecast the stock prices of 391 

experiment 2 with 57.97% accuracy (95% CI=±8.23%), which exceeded chance at a trend level 392 

(p=0.073, binomial test; Fig. 2). Further, classifiers trained on randomized stock prices from 393 

experiment 1 could not forecast next-day stock prices in experiment 2 (Combined model: 394 

t(499)=1.39, p=0.165; reduced model including only AIns neural activity, prior price movement, 395 

and their interaction: t(499)=-1.134, p=0.257).  396 

 397 

Conversely, a classifier trained on data from the Combined model of experiment 2 forecast stock 398 

price movement in data from experiment 1 with 63.97% accuracy (95% CI=±8.06%), which 399 

exceeded chance (p=0.001, binomial test). A reduced version of this classifier trained only on 400 
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AIns neural activity, prior price movement, and their interaction in experiment 2 continued to 401 

forecast stock prices from experiment 1 with 66.18% accuracy (95% CI=±7.95%), which 402 

exceeded chance (p<.001, binomial test; Fig. 2). Again, classifiers trained on randomized stock 403 

prices from experiment 2 could not forecast next-day stock prices in experiment 1 (Combined 404 

model: t(499)=-0.292, p=0.77; reduced model including only AIns neural activity, prior price 405 

movement, and their interaction: t(499)=0.758, p=0.449). Together, these findings suggest that the 406 

interaction of group AIns activity with the previous day’s stock price contains information 407 

capable of forecasting next-day stock price movement, even out-of-sample.  408 

 409 

Whole brain confirmatory analyses 410 

A first whole-brain analysis confirmed predicted responses to incentive outcomes and task 411 

engagement. As predicted, NAcc activity increased both in response to gains (i.e., price increases 412 

after choosing to invest) and to avoided losses (i.e., counterfactual price decreases after choosing 413 

not to invest). Conversely, NAcc activity decreased both in response to losses (i.e., price 414 

decreases after choosing to invest) and to missed gains (i.e., counterfactual price increases after 415 

choosing not to invest; Table 3).  416 

 417 

A second whole-brain analysis confirmed the selection of Volumes Of Interest (VOI) whose 418 

activity forecast stock price direction and inflection (Fig. 3 and Table 4). In experiment 1, whole-419 

brain analyses of neural activity associated with subsequent stock price direction (i.e., when the 420 

price increases after increases or decreases after decreases) suggested that left NAcc activity 421 

forecast stock price increases, but only at a predicted small-volume threshold (i.e., 2 voxels at 422 

p<0.005 uncorrected; 7 voxels at p<0.01 uncorrected). Whole-brain analyses of neural activity 423 

associated with stock price inflection (i.e. when the price decreased after a previous increase or 424 

increased after a previous decrease) indicated that increased right AIns, bilateral dorsal striatum, 425 
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occipital cortex and dorsal medial prefrontal cortex (DMPFC) activity preceded stock price 426 

movement inflections (p<0.001 uncorrected). In experiment 2, while left NAcc activity did not 427 

forecast stock price direction (instead, activity in the occipital cortex, posterior cingulate cortex, 428 

and the MPFC (4 voxels) forecast stock price direction at p<0.001, uncorrected), increased right 429 

AIns activity still forecast stock price inflections (p<0.001 uncorrected; Figure 3). 430 

 431 

Discussion 432 

In two neuroimaging experiments, we examined whether brain activity could forecast next-day 433 

movements in stock prices. Results indicated that group AIns activity could forecast stock price 434 

inflections (i.e. changes in price direction) across two different stock markets. Group NAcc 435 

activity could also forecast price direction (i.e., continuing price movement), but only in a market 436 

with autocorrelation in stock prices. Importantly, group choice behavior could not forecast stock 437 

prices, implying that the findings could not be attributed to learning over time or to correlated 438 

stock price histories. These findings suggest that neural activity associated with anticipatory affect 439 

can forecast aggregate choice – even in dynamic and competitive environments like stock 440 

markets. The results extend previous research using brain activity to predict risky choices of 441 

individuals, in which NAcc activity has been associated with positive arousal and risk-seeking 442 

choices, but AIns activity has been associated with general or negative arousal and risk-averse 443 

choices (Kuhnen and Knutson, 2005; Preuschoff et al., 2006; Lohrenz et al., 2007).  444 

 445 

These findings are also consistent with a “partial scaling” account of aggregate choice, in which 446 

some components underlying individual choice generalize to forecast aggregate choice better than 447 

others, including subsequent behavior (Knutson and Genevsky, 2018). The partial scaling account 448 

lies between “total scaling” accounts in which individual choices simply add up to generate 449 

aggregate choice (e.g., Expected Value) and “no scaling” accounts in which individual choices 450 
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yield no information about aggregate choice (e.g., the “Efficient Market Hypothesis” (Fama, 451 

1970)). If no scaling accounts posit that choice behavior should not consistently forecast stock 452 

price movements, then by extension, neither should its components. Yet, in both experiments, the 453 

interaction of group AIns activity with previous stock price movements forecast stock price 454 

inflections. Further, cross-validation analyses demonstrated that this neural marker generalized 455 

across markets (which varied in terms of subjects, stock identity, and price dates). Thus, these 456 

findings provide an initial demonstration that experimentally-sampled AIns activity can forecast 457 

aggregate stock price dynamics.  458 

 459 

While AIns activity forecast stock price inflections, it remains unclear which features of stock 460 

prices previously influenced AIns activity. Behavioral researchers have found that individuals can 461 

distinguish stock price sequences from randomized but otherwise similar sequences, but have not 462 

identified which stock features facilitate this distinction (Hasanhodzic et al., 2019). The present 463 

analyses suggested that AIns responses to conventional stock indicators (e.g., the direction of 464 

price movement on the previous day, the direction of slope, or the volatility of current stock price 465 

movements) could not forecast price inflections in a straightforward way. AIns activity might 466 

instead respond to more complex or even mutually-exclusive dynamics in stock prices. Based on 467 

previous neuroimaging research implicating AIns activity in arousal and uncertainty (Critchley et 468 

al., 2001; Clark et al., 2014), various stock features that induce surprise or doubt might generally 469 

increase AIns activity. The present findings do not specify, however, exactly which input patterns 470 

induce the psychological uncertainty and associated neural activity that contributed to forecasts – 471 

a topic which remains ripe for further inquiry. The degree to which rapid and dynamic neural 472 

correlates of anticipatory affect are accessible to conscious report is also unclear, but deserves 473 

further targeted investigation (Knutson et al., 2014). 474 

 475 
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Although medial prefrontal cortical activity often predicts individual choice, including financial 476 

investments (Frydman et al., 2012; De Martino et al., 2013), MPFC activity did not forecast 477 

aggregate stock price movements in these experiments. A partial scaling account posits that 478 

neural components related to anticipatory affect (such as the NAcc) lie lower in the brain and are 479 

more evolutionarily conserved, whereas components related to value integration (such as the 480 

MPFC) lie higher and nearer to behavioral output (Haber and Knutson, 2010). While neural 481 

activity related to anticipatory affect might generalize more broadly across people to forecast 482 

aggregate choice (Knutson & Genevsky, 2018), neural activity related to value integration might 483 

instead extend more narrowly within individuals across time to promote personal choice 484 

consistency (Camille et al., 2011).  485 

 486 

Few studies have examined NAcc or AIns activity in the context of aggregate stock market events 487 

(Barton et al., 2014), although in one study, experimentally sampled NAcc activity tracked 488 

experimentally-produced market bubble formation, and individuals who showed greater AIns 489 

activity tended to exit experimental market bubbles earlier and reap higher returns (Smith et al., 490 

2014). With the exception of a single patient case study of NAcc dopamine release (Kishida et al., 491 

2011), however, research has not yet used experimentally-sampled brain activity to forecast actual 492 

stock price dynamics. Further, although several neuroforecasting studies have implicated NAcc 493 

activity in forecasting aggregate choice (Knutson & Genevsky, 2018), only one study of an 494 

internet attention market (i.e., youtube.com) has implicated AIns activity in lower video 495 

engagement (Tong et al., 2020).  496 

 497 

In the current experiments, AIns activity provided the most generalizable forecasts. The ability of 498 

AIns activity to forecast aggregate choice in this research may depend on the types of choice that 499 

predominate in stock markets in contrast to other markets. While previous research has primarily 500 
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focused on markets involving purchases of goods, stock markets require investors to weigh 501 

uncertain gains (or “goods”) against uncertain losses (or “bads”). Outside the laboratory, 502 

forecasting stock price inflections (or reversals) may present a more formidable challenge than 503 

forecasting stock price direction (or momentum). Despite the practical challenges inherent in 504 

applying neuroimaging data to forecasts of stock price dynamics (e.g., the difficulty of sampling 505 

neural data immediately prior to price changes), neural measures may eventually yield valuable 506 

“hidden information” which is otherwise difficult to obtain (Ariely and Berns, 2010).  507 

 508 

This research features a number of novel strengths, including the use of actual stock price data, 509 

direct quantitative comparisons of qualitatively distinct predictors (e.g., stock indicators, 510 

behavior, and neural activity), out-of-sample cross-validation, and a replication experiment which 511 

controlled for temporal structure in stock prices. Limitations, however, include necessarily 512 

constrained sets of stock scenarios (necessitated by time limits typical of scanning experiments), 513 

simplified presentation of information (e.g., distilled from more conventional but variable trading 514 

information interfaces and timescales), and use of historical (though recent) data. All of these 515 

variables deserve systematic exploration in future research. Many interesting questions also 516 

remain with respect to individual differences (e.g., whose behavior and brain activity best forecast 517 

stock price movement), generalizability to more complex trading environments, potential 518 

influence of prior trading experience, and conditions under which behavior adds value to neural 519 

forecasts.  520 

 521 

Overall, this research extends neuroeconomic theory by implying that brain activity associated 522 

with anticipatory affect can forecast aggregate choice – even in complex markets involving 523 

dynamic strategic interactions between actors (Kirman, 1992). Additionally, the current findings 524 

challenge traditional theoretical accounts which imply that elements of choice cannot inform 525 
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financial forecasts (Fama, 1970) by demonstrating that previously hidden neural activity might 526 

provide uniquely valuable information about stock price dynamics. 527 

   528 
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 641 

Figure legends 642 

 643 

Figure 1. Asset Pricing Task trial structure. Trials included presentation of a stock trend line 644 

(2s; left); choice to invest (4s; middle) and outcome (2s; right). A variable-duration inter-trial 645 

central fixation cross (2-6s) was presented between trials (not depicted).  646 

 647 

Figure 2. Anterior insula activity forecasts stock price inflections. Left: AIns Volumes Of 648 

Interest (VOIs); Middle: AIns VOI activity is higher in trials involving an inflection (i.e., stock 649 

price decreases after a previous increase or increases after a previous decrease). Error bars depict 650 

standard error of the mean. Nexp1=34, Nexp 2=39; Right: The interaction of AIns activity by 651 

previous stock price movement classifies out-of-sample stock price movement. First (second) bar 652 

depicts accuracy of a reduced model trained on AIns activity, previous stock price movement, and 653 

their interaction in experiment 1 (2), and tested on experiment 2 (1). Dotted line indicates chance 654 

performance. Error bars depict 95% confidence intervals. Nexp1=34, Nexp 2=39. 655 

 656 

Figure 3. Whole brain confirmation that activity in predicted regions forecasts stock price 657 

direction and inflection. Left: White circles indicate VOIs. Top: Stock price direction: NAcc 658 

activity forecast stock price direction in experiment 1 (middle), but not experiment 2 (right). 659 

Bottom: Stock price inflection: AIns activity forecast stock price inflection in experiments 1 660 

(middle) and 2 (right). Whole-brain analysis, Nexp1=34, Nexp 2=39. Statistical overlay thresholded 661 

at p=0.01, uncorrected for display. 662 
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 665 

Table 1. Logistic regression models forecasting aggregate stock price dynamics (Experiment 666 

1). Statistics are coefficients with SEMs in parentheses. Significance: ***p<0.001; **p<0.01; 667 

*p<0.05. ‡ R
2
 is McFadden’s pseudo-R

2
.  668 

 669 

 Market Behavioral 

 

Neural 

 

Combined 

(Intercept) 1.157(0.470)* -1.041(0.723) -0.046(0.195) -0.135(1.041) 

Slope -1.895(1.689)   -2.943(1.845) 

Volatility -0.055(0.033)   -0.035(0.036) 

Previous Trial -0.954(0.364)**   -1.262(0.464)** 

Choice  2.060(1.291)  1.980(1.519) 

NAcc activity   6.227(2.827)* 8.892(4.151)* 

NAcc*Prv Trial    -2.513(7.136) 

AIns activity   -2.610(2.658) 5.038(4.099) 

AIns*Prv Trial    -12.748(6.101)* 

MPFC activity   -0.659(1.932) -0.939(3.216) 

MPFC*Prv Trial    -1.656(4.622) 

R2 ‡ 0.057 0.014 0.030 0.136 

Χ2  model 10.834* 2.612 5.554 25.596** 

AIC 185.438 189.659 190.717 184.675 
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Table 2. Logistic regression models forecasting aggregate stock price dynamics (Experiment 672 

2). Statistics are coefficients with SEMs in parentheses. Significance: ***p<0.001; **p<0.01; 673 

*p<0.05. ‡ R
2
 is McFadden’s pseudo-R

2
.  674 

 675 

 Market Behavioral 

 

Neural 

 

Combined 

(Intercept) 0.525(0.494) -0.275(0.727) 0.122(0.184) 0.365(0.951) 

Slope -1.397(1.725)   -1.634(1.791) 

Volatility -0.028(0.033)   -0.030(0.035) 

Previous Trial -0.207(0.344)   -0.740(0.412) 

Choice  0.678(1.324)  0.944(1.517) 

NAcc activity   

 

0.146(2.852) 

 

-0.625(4.332) 

NAcc*Prv Trial    1.552(6.061) 

AIns activity   -0.996(3.004) 6.143(4.433) 

AIns*Prv Trial    -15.032(6.534)* 

MPFC activity   2.122(1.779) 2.899(2.714) 

MPFC*Prv Trial    -0.973(3.701) 

R2 ‡ 0.008 0.001 0.010 0.058 

Χ2  model 1.670 0.263 1.947 11.099 

AIC 197.378 194.785 197.101 201.949 
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Table 3. Whole brain responses to actual and counterfactual gain versus loss outcomes. Threshold 678 

Z=3.29, p<0.001, uncorrected, cluster=min.18 voxels, voxel size=2.9 mm
3
, Talairach Coordinates 679 

L=Left, R=Right, Mid=Middle, Temp = Temporal, Sup = Superior, Inf = Inferior, #V=number of 680 

voxels. 681 

 682 

Gain versus Loss Outcomes Counterfactual Gain versus Loss Outcomes 

Region x y z Peak Z #V Region x y z Peak Z #V 

Experiment 1 Experiment 1 

L NAcc -10 7 -3 6.23 339 L NAcc -13 10 -6 5.88 100 

R NAcc 13 10 -6 6.12 335 R NAcc 13 12 -3 5.08 94 

L Angular 

Gyrus 

-45 -57 35 4.55 300 R Putamen 30 -8 3 4.69 85 

L Sup Frontal 

Gyrus 

-19 21 46 4.98 206 R Lingual Gyrus 22 -89 -3 4.47 62 

L Inf Frontal 

Gyrus 

-45 33 8 5.22 192 R 

Supramarginal 

Gyrus 

54 -40 35 4.33 43 

L Cingulate 

Gyrus 

-4 -37 38 4.97 182 R Mid Frontal 

Gyrus 

30 33 35 4.03 35 

L Med Frontal 

Gyrus 

-19 -8 49 4.09 73 R Anterior 

Cingulate 

1 42 14 4.06 30 

L Inf Temp 

Gyrus 

-48 -19 -18 4.48 64 R Precentral 

Gyrus 

48 10 6 3.82 18 

R Inf Temp 

Gyrus 

56 -28 -15 4.23 53  

Experiment 2 

L Ant 

Cingulate 

-2 42 12 4.10 51 R NAcc 13 10 -9 5.91 398 
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R Angular 

Gyrus 

36 -60 32 4.20 48 R Inf Temp 

Gyrus 

39 -69 -0 5.44 243 

R Sup Frontal 

Gyrus 

25 33 43 4.49 45 L Mid Occipital 

Gyrus 

-33 -74 -0 5.21 181 

R Inf Parietal 

Lobule 

48 -46 43 3.97 42 R Inf Parietal 

Lobule 

36 -43 43 4.07 152 

L Med Frontal 

Gyrus 

-2 27 38 3.75 39 L NAcc -16 10 -6 5.69 113 

L Inf Frontal 

Gyrus 

-22 24 -12 4.59 25 Right Precentral 

Gyrus 

39 -2 26 4.43 91 

R Cerebellar 

Tonsil 

42 -54 -38 3.87 24 L Cerebellum -25 -63 -26 4.70 53 

R Mid Frontal 

Gyrus 

28 53 3 3.73 22 R Fusiform 

Gyrus 

45 -51 -9 4.25 31 

 

Experiment 2 

R Mid Frontal 

Gyrus 

36 -2 55 3.82 31 

R (+L) NAcc  16 7 -3 7.51 14381 L Precuneus -22 -51 46 4.10 28 

R Cerebellar 

Tonsil 

42 -54 -41 6.00 214 L Supramarginal 

Gyrus 

-39 -37 38 3.93 26 

R Sup Temp 

Gyrus 

56 -57 23 5.30 163 R Mid Frontal 

Gyrus 

36 39 6 3.70 19 

R 

Parahippocam

pal Gyrus 

25 -31 -6 4.53 51 R Precentral 

Gyrus 

45 21 35 3.94 19 

R Mid Frontal 

Gyrus 

30 30 29 4.03 46       

R Culmen 25 -31 -20 4.56 35       
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 684 

Table 4. Whole brain activity forecasting stock price direction (price continues) and inflection 685 

(i.e., price changes). Whole-brain analysis, threshold Z=3.29, p<0.001, uncorrected, 686 

cluster=min.18 voxels, voxel size=2.9 mm
3
, Talairach Coordinates L=Left, R=Right, 687 

Mid=Middle, Temp = Temporal, Sup = Superior, Inf = Inferior, #V=number of voxels. 688 

 689 

Stock price direction  Stock price inflection 

Region x y z Peak Z #V Region x y z Peak Z #V 

Experiment 1 Experiment 1 

L Cuneus -10 -95 8 3.85 31 R Precuneus 25 -66 32 5.80 632 

R Mid 

Occipital 

Gyrus 

25 -86 0 -5.01 21 L Sup Occipital 

Gyrus 

-30 -72 29 5.28 519 

 

Experiment 2 

     R Medial 

Frontal Gyrus 

1 33 40 4.31 105 

L Cingulate 

Gyrus 

-2 -46 35 4.19 74 L Inf Temporal 

Gyrus 

-57 -37 -18 5.02 69 

R Mid 

Occipital 

Gyrus 

39 -74 3 -4.58 37 R Pallidum 10 -2 3 4.54 66 

L Precuneus -2 -66 26 3.57 22 L Cuneus -13 -74 12 4.46 64 

L Cerebellar 

Lingual Gyrus  

-13 -83 -6 4.07 20 L Pallidum -13 1 3 4.31 37 

      R Ant Insula 39 18 0 4.64 29 

      L Precuneus -13 -74 43 5.05 28 

      R Thalamus 10 -14 14 4.82 26 

      L Thalamus -7 -16 12 4.30 25 
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      L Cerebellar 

Declive  

-30 -57 -12 4.43 21 

      R Cingulate 

Gyrus 

1 -34 26 4.59 21 

      R Cuneus 10 -69 14 3.90 19 

       

Experiment 2 

     

 R Ant Insula 28 18 -3 3.97 22 
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