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ABSTRACT 30 

Learning the spatial layout of a novel environment is associated with dynamic activity changes in the 31 

hippocampus and in medial parietal areas. With advancing age, the ability to learn spatial environments 32 

deteriorates substantially but the underlying neural mechanisms are not well understood. Here, we report 33 

findings from a behavioral and a fMRI experiment where healthy human older and younger adults of either sex 34 

performed a spatial learning task in a photorealistic virtual environment. We modeled individual learning 35 

states using a Bayesian state-space model and found that activity in retrosplenial cortex/parieto-occipital 36 

sulcus and anterior hippocampus did not change systematically as a function learning in older compared to 37 

younger adults across repeated episodes in the environment. Moreover, effective connectivity analyses 38 

revealed that the age-related learning deficits were linked to an increase in hippocampal excitability. 39 

Together, these results provide novel insights into how human aging affects computations in the brain’s 40 

navigation system, highlighting the critical role of the hippocampus. 41 
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SIGNIFICANCE STATEMENT 42 

Key structures of the brain’s navigation circuit are particularly vulnerable to the deleterious consequences of 43 

aging, and declines in spatial navigation are among the earliest indicators for a 44 

progression from healthy aging to neurodegenerative diseases. Our study is among the first to 45 

provide a mechanistic account about how physiological changes in the aging brain affect the 46 

formation of spatial knowledge. We show that neural activity in the aging hippocampus and medial 47 

parietal areas is decoupled from individual learning states across repeated episodes in a novel spatial 48 

environment. Importantly, we find that increased excitability of the anterior hippocampus might 49 

constitute a potential neural mechanism for cognitive mapping deficits in old age. 50 



Diersch et al. - 4 

 

 4 

INTRODUCTION 51 

Exploring our surroundings has always been one of the hallmarks of human identity. To do so, we need to 52 

rapidly generate spatial representations and flexibly retrieve them later. With advancing age, however, these 53 

abilities deteriorate considerably (Lester et al., 2017). Older adults are slower in learning novel environments 54 

and have problems to utilize this information later (Iaria et al., 2009). Moreover, learning landmark locations 55 

during exploratory navigation is more difficult for them (Yamamoto and DeGirolamo, 2012), whereas their 56 

spatial memory is relatively preserved for familiar environments (Rosenbaum et al., 2012). As a consequence, 57 

they may avoid unfamiliar places and become overwhelmed when confronted with changes in their 58 

environment.  59 

Although core regions of the brain’s navigation circuit in the medial temporal lobe are among the first 60 

to be affected during the progression from healthy aging to Alzheimer’s disease (AD; Braak and Del Tredici, 61 

2015), the neural mechanisms for age-related deficits in spatial learning are still poorly understood, even in 62 

healthy older adults. Studies in rodents and non-human primates showed that place cells in the CA3 subfield 63 

of the hippocampus exhibit higher firing rates in aged animals during navigation, and they fail to encode new 64 

information when rats encounter novel environments (Wilson et al., 2005; Thomé et al., 2016). Moreover, 65 

firing patterns of aged CA1 place cells are often unstable across repeated visits to the same environment 66 

(Barnes et al., 1997). In humans, in contrast, there is evidence for an age-related hypoactivation in the 67 

hippocampus and in medial parietal areas during spatial navigation (Moffat et al., 2006; Konishi et al., 2013). 68 

However, whether activity changes in the aging brain are indicative of a compensatory mechanism or 69 

a correlate of aberrant processing is a long-standing issue in cognitive neuroscience research on aging (Grady, 70 

2012; Morcom and Henson, 2018). Evidence from studies investigating age-related impairments in separating 71 

sensory input from mnemonic representations (i.e., pattern separation) suggests that hyperactivity in the 72 

dentate gyrus and CA3 may underlie memory deficits in healthy aging (Yassa et al., 2011; Reagh et al., 2018). 73 

Hippocampal hyperactivity has been further linked to preclinical markers for AD (Leal et al., 2017). 74 

Age-related differences in neural activity may further depend on the point in time when activity is 75 

measured during task performance. Studies in younger adults showed that the engagement of the 76 

retrosplenial cortex (RSC) and the parieto-occipital sulcus (POS) together with the hippocampus changes over 77 

the course of learning (Wolbers and Büchel, 2005; Auger et al., 2015; Brodt et al., 2016; Patai et al., 2019). For 78 

example, Wolbers and Büchel (2005) showed that activity in the RSC/POS tracked the learning of relative 79 

landmark locations during spatial navigation and increased across learning sessions, whereas hippocampal 80 

activity reflected the amount of learning in a given session and decreased over time. Given the time course of 81 

its involvement during spatial learning, the RSC has been implicated in the retrieval of hippocampal-82 

dependent memories. It receives inputs from CA1 and the subiculum (Kobayashi and Amaral, 2003; Bzdok et 83 

al., 2015) and is known to be involved in the integration of different spatial reference frames as well as in 84 

updating spatial representations (Epstein, 2008; Miller et al., 2014). The hippocampus, in turn, particularly its 85 

anterior portion, is known for its role in generating (spatial) representations (Zeidman and Maguire, 2016). 86 

Moreover, place-cell like activity in the RSC of mice relies on intact input from the hippocampus to support 87 

memory retrieval (Mao et al., 2018).  88 
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Here, we report findings from two experiments where we 1) characterized age-related 89 

problems in learning a novel environment, and 2) investigated the underlying neural mechanisms using fMRI. 90 

We focused on activity changes in the RSC/POS and the hippocampus and changes in effective connectivity 91 

within and between the two regions. This allowed us to test whether age-related problems in retrieving newly 92 

learnt information during spatial navigation is linked to a malfunctioning of the integration of hippocampal 93 

input within RSC/POS and/or a corrupted hippocampal signal. 94 

MATERIAL AND METHODS 95 

Participants 96 

In the behavioral experiment, 17 younger (9 female, mean age: 24.0 ± 1.66, age range: 21-28) and 17 older 97 

adults took part (8 female, mean age: 66.4 ± 2.69, age range: 61-72). All of them were right-handed (LQ: 91.9 98 

± 11.0; Oldfield, 1971) and the older adults showed no signs of major cognitive impairment with scores higher 99 

than 23 in the Montreal Cognitive Assessment (MoCA score: 26.9 ± 2.18; Nasreddine et al., 2005; Luis et al., 100 

2009).  101 

To determine the required sample size for the fMRI experiment, we ran a power analysis with the 102 

effect size that was obtained in the behavioral experiment for the interaction between age group and learning 103 

blocks (ηp² = .188), using G*Power 3.1 (α = 0.05, 1-β = 0.95, 2 groups, 8 repeated measurements; Faul et al., 104 

2007). The power analysis further considered the most conservative correction for non-sphericity with 105 

1/number of measurements - 1. This analysis indicated a requirement of 28 participants in total. We decided to 106 

double this number and recruited a total of 64 participants (27 younger adults, 37 older adults). Three 107 

participants (one younger and two older adults) were excluded from further analyses because they were 108 

identified as outliers in the fMRI data quality checks. In addition, one younger and three older adults were 109 

excluded due to problems in following task instructions and/or cybersickness. The final fMRI sample consisted 110 

of 25 younger (13 female, mean age: 23.4 ± 2.18, age range: 20-26) and 32 older adults (17 female, mean age: 111 

67.3 ± 4.80, age range: 58-75). They were all right-handed (LQ: 90.4 ± 12.1; Oldfield, 1971) and the older adults 112 

did not show signs of major cognitive impairment (MoCA score: 27.6 ± 1.93, range: 25-31; Nasreddine et al., 113 

2005). 114 

Across experiments, participants had normal or corrected-to-normal vision and none of them 115 

reported a history of psychiatric or neurological diseases or use of medication that might affect task 116 

performance or MRI scanning. In addition, most of the participants already participated in previous 117 

virtual reality (VR) experiments and, hence, were familiar with navigating in these kinds of setups. 118 

Participants provided informed consent and were paid for their participation in accordance with the 119 

local ethics committee.  120 

Virtual Environment  121 

Using 3ds Max (Autodesk, San Rafael, CA, USA), a novel virtual environment (VE) was developed, which 122 

resembled a typical German historic city center consisting of town houses, shops and restaurants. The VE had 123 

a square-like spatial layout with four interconnected 4-way intersections (Figure 1B). At two intersections, a 124 
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church and a town hall were placed at the end of one of the outgoing streets, whereas a 2D wall displaying a 125 

photo texture of a street continuation bordered the remaining street ends. The VE was based on a 3D model of 126 

the old city center of Tübingen. All of the participants confirmed to have never visited Tübingen before the 127 

time of testing.  128 

Experimental Design and Procedure 129 

Vizard 5.0 (World Viz, Santa Barbara, CA, USA) was used to animate the experiments, which both started with 130 

a familiarization phase during which the participants encountered the VE for the first time. Their task during 131 

this phase was to collect tokens that were placed at the street ends by actively traveling the VE, using the four 132 

arrow keys of a standard computer keyboard. This phase ended once every token was collected, ensuring that 133 

they had visited every street at least once. It followed a short practice of the pointing task (8 trials) that was 134 

used to measure navigational retrieval in the experiments. In this way, the VE and the task were introduced in 135 

a step-wise manner to reduce the impact of different degrees of experience in handling VR setups on 136 

task performance (Diersch and Wolbers, 2019). 137 

 In the behavioral experiment, eight learning blocks were implemented during which eight retrieval 138 

phases alternated with seven encoding phases. One navigational retrieval phase consisted of 12 pointing 139 

trials. A pointing trial started with participants being passively transported towards one of the intersections 140 

starting from one of the four streets leading towards that intersection (Figure 1C, see Video 2 for an 141 

example trial). Duration of this travel phase was fixed to 4 s corresponding to 20 virtual meters. The 142 

movement stopped at the center of the intersection, a red crosshair appeared in the middle of the screen, and 143 

participants were asked to point in the direction of one of the two target landmarks. Pointing was performed 144 

by moving the crosshair to the left or right with the arrow keys of the keyboard. Once they believed to have 145 

reached the correct position, they confirmed their response by pressing the space bar. Participants were asked 146 

to respond as fast and accurately as possible with a time-out of 12 s (corresponding to 1½ 360° turns in the 147 

VE). The ITI, showing a fixation cross, was fixed to 1.5 s. Throughout each trial, a picture cue of the target 148 

landmark was displayed at the bottom of the screen and the background was obscured by fog to prevent 149 

participants from seeing the street ends or target landmarks during pointing. The first seven retrieval phases 150 

were followed by an encoding phase during which participants were passively transported around the whole 151 

VE (without fog), starting from one of the two target landmarks in clockwise or counterclockwise order, 152 

counterbalanced across the experiment (see Video 1 for a short segment of one tour). During encoding, 153 

participants were instructed to pay close attention to the spatial layout of the VE and the location of the target 154 

landmarks. Passive transportation instead of self-controlled traveling was chosen to ensure that every 155 

participant experienced the VE for the same amount of time (duration: 2.88 min per tour). In total, participants 156 

performed 96 navigational retrieval trials (4 intersections x 4 directions x 2 target landmarks x 3 repetitions) in 157 

a pseudo-randomized order, with the restriction that each intersection/target landmark combination was 158 

encountered starting from two of the four possible directions in the first half of the experiment. In the second 159 

half of the experiment, divided by a self-timed break, the respective other two directions were used, 160 

counterbalanced across participants. This allowed us to examine how experiencing familiar locations from a 161 

novel viewpoint affects pointing performance. 162 
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The fMRI experiment also consisted of eight learning blocks during which eight retrieval phases 163 

alternated with seven encoding phases (see Figure 1A for the structure of the fMRI experiment). fMRI 164 

scanning started after a familiarization phase outside of the scanner with the same structure as in the 165 

behavioral experiment and a short practice phase during structural imaging. One retrieval phase consisted of 8 166 

navigational retrieval trials, which were followed by 4 control trials. These control trials also started with a 4 s 167 

travel phase towards an intersection, followed by a pointing phase with a crosshair on screen. Here, cued by a 168 

corresponding picture, however, participants were instructed to indicate which of the four corner buildings at 169 

the intersection had changed its color and was shaded in blue. Their responses in the control task were 170 

classified as correct if they were within ± 25° from the middle of the respective building, approximately 171 

corresponding to its outline. Participants moved the crosshair with their index and middle finger for left and 172 

right turns and confirmed their responses with their right thumb on a 5-key Lumitouch response box. Again, 173 

participants were asked to respond as fast and accurately as possible with a time-out of 12 s. The ITIs had a 174 

variable duration of 1-5 s with a mean of 3 s. During retrieval trials, an additional jittered interval of 0.5-1.5 s 175 

duration with a mean of 1 s was included after the travel phase/before the crosshair appeared. The structure of 176 

the respective encoding tours was the same as in the behavioral experiment (passive traveling with a constant 177 

duration of 2.88 min per tour). In total, participants performed 64 navigational retrieval trials (4 intersections x 178 

4 directions x 2 target landmarks x 2 repetitions) without the change of directions from the first to the second 179 

half of the experiment as in the behavioral experiment. The change in directions was omitted in the fMRI 180 

environment to eliminate the potential influence of approaching the intersections from novel viewpoints and 181 

to accommodate a reduced number of trials due to the inclusion of the control task. In total, participants 182 

performed 32 control trials (4 intersections x 4 directions x 2 repetitions). fMRI scanning consisted of 3 runs 183 

that were divided by short breaks with 24 navigational retrieval trials, 12 control trials and 2 encoding tours in 184 

the 1st run; 24 navigational retrieval trials, 12 control trials and 3 encoding tours in the 2nd run; and 16 185 

navigational retrieval trials, 8 control trials and 2 encoding tours in the 3rd run.  186 

--- insert Figure 1 here --- 187 

Bayesian Modeling of Performance Data 188 

In both experiments, subject-specific improvements in navigational performance were estimated by 189 

using a Bayesian implementation of a state-space model that is similar to a local level model where 190 

the trial outcomes, y, correspond to the observed level, and the state level represents the hidden 191 

learning state, μ (Figure 2; Commandeur and Koopman, 2007). The hidden learning state, μ, is 192 

following a random walk such that the actual block learning state depends on the learning state from 193 

the previous block. Similar state-space models (e.g., Smith et al., 2007) have been used in previous 194 

studies to estimate spatial learning (Wolbers and Büchel, 2005; Auger et al., 2015). However, these 195 

studies modeled binary data on a trial-by-trial basis, whereas the present study used continuous 196 

performance outcomes and focused on estimating spatial learning block-wise instead of trial-wise. To 197 

model the learning state block-wise, an intermediate level accounts for the effects of the responses, η, 198 

and shrinks the effects of individual trials within a block towards the block-wise learning state. In this 199 

way, the model accounts for the fact that we can only measure behavioral performance but not the 200 
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effect of learning or navigational improvement, which we expected to change from one encoding 201 

phase to the next but not necessarily from trial to trial. Introducing this intermediate level additionally 202 

allowed us to incorporate potential missing trials into the response effects, η. In case of missing trials, 203 

we estimated η ~ HalfNormal (log(𝑦̅b),1), i.e., using the log of the block mean as location parameter. 204 

The model was implemented using the Python interface to Stan, PyStan (Carpenter et al., 2017; Stan 205 

Development Team, 2017; see Figure 2-1 for the Stan code). To account for the substantial between- 206 

and within subject variability of the data, weakly informative priors were chosen to provide vague 207 

guidance for effective sampling. The model was fit for each participant using four chains each with 208 

4000 iterations, of which 2000 correspond to the warm up period, totaling 8000 post-warm-up draws. 209 

After inference, convergence of the chains was checked by means of the effective sample size and 210 

the potential scale reduction factor (Rhat), confirming that our chains mixed well (Gelman and Shirley, 211 

2011).  212 

--- insert Figure 2 here --- 213 

To determine the fit of our model to the data, we performed a posterior predictive check that compares the 214 

observed data with simulated data using samples from the posterior distribution. In Figure 2-2A-E, the 215 

posterior predictive samples distribution yrep is plotted together with the observed data y for representative 216 

individuals from different learning sub-groups in the fMRI experiment (see Performance Clustering section) 217 

showing that our model was adequate to capture the observed data. We further compared our model to an 218 

alternative, simpler model where η was removed (i.e., learning was estimated trial-wise instead of block-wise). 219 

Using a leave-one-out (LOO) cross-validation (Vehtari et al., 2017), point-wise out-of-sample prediction 220 

accuracies were estimated for both models. Comparing them confirmed that the model incorporating the 221 

intermediate layer accounting for the response effects, η, provided better fit to the data, as evidenced by 222 

positive LOO differences across the whole sample (sample mean = 1209, SE =  242; see Figure 2-2F for a 223 

histogram showing the individual LOO difference values).  224 

fMRI Acquisition Parameters 225 

Scanning was performed on a 3T Magnetom Prisma scanner (Siemens Healthcare, Erlangen, Germany) with a 226 

20-channel head coil. High-resolution T1-weighted anatomical images were acquired using a MPRAGE 227 

sequence (1 mm isotropic resolution; TE = 2,82 ms; TR = 2500 ms; flip angle = 7°). In three functional runs, 228 

whole-brain T2*-weighted echo planar images with BOLD contrast were acquired in interleaved bottom-up 229 

order (36 slices, 3 mm isotropic resolution; TE = 30 ms; TR = 2000 ms; FoV = 216 mm; 72 x 72 image matrix; flip 230 

angle = 90°).  231 

Behavioral and fMRI statistical analyses 232 

Behavioral Analyses 233 

Absolute pointing errors (i.e., the deviation of the subject’s response from the direction towards the respective 234 

target landmark) served as performance measures in both experiments. In the behavioral experiment, we 235 

additionally analyzed response times given the change in directions from which the intersections were 236 
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approached after the first half of the experiment. Where appropriate, analyses of variance (ANOVA) were 237 

performed across learning blocks with age-group (younger adults, older adults) as between-subjects’ variable. 238 

In a control analysis, we checked for potential biases in pointing behavior by applying circular statistics on the 239 

signed pointing error data relative to each target landmark for every intersection-direction combination, using 240 

the CircStat toolbox in MATLAB (Berens, 2009). In general, a threshold of p < 0.05 was considered significant 241 

(with correction for the number of tests where applicable). 242 

Logistic Regression Model 243 

With respect to the behavioral experiment, we were interested in whether two features that characterized 244 

age-related differences in performance could be used to predict the age group of our participants. The first 245 

feature was the mean amount of learning across all learning blocks, which was calculated based on the 246 

differences between individual learning state estimates, derived from the Bayesian state-space model, from 247 

two consecutive learning blocks. The estimates from the first learning block after the familiarization phase, 248 

during which participants encountered the VE for the first time, were subtracted from chance level 249 

performance (90°). In this way, learning related improvements in performance were considered that already 250 

took place during the familiarization phase, resulting in pointing errors well below chance level in the first 251 

learning block for some participants. The second feature were the changes in response times after the 252 

directions changed from which the intersections were approached after the first half of the experiment. These 253 

two features were normalized and then fed into a logistic regression model as implemented in Scikit-learn 254 

(Pedregosa et al., 2011), with age group as target vector. The regularization parameter was set using a 10-fold 255 

nested cross-validation, and the performance of the model was assessed by computing the average area 256 

under the curve (AUC) for all folds. In this way, the probability of each individual belonging to the younger or 257 

the older age group could be estimated. The resulting probabilities are interpreted in terms of individual 258 

performance: those participants with a higher probability of belonging to the younger age group show better 259 

performance on the task while a higher probability of being in the older age group relates to poorer 260 

navigational performance. 261 

Performance Clustering 262 

In the analysis of the behavioral data from the fMRI experiment, we assessed whether subjects could be 263 

clustered into different learning sub-groups based on their performance. This allowed us to investigate 264 

learning-related differences in neural activity at the between-subjects level. For each participant, we created a 265 

distribution based on the difference of the latent state distributions of the last and first learning block to 266 

capture the overall amount of learning across the experiment. The mean and the standard deviation 267 

parameters of this difference distribution were obtained by fitting it to a normal distribution using SciPy 268 

(Jones et al., 2001). In this way, the clustering provides a richer source of information to distinguish between 269 

different learning sub-groups. For example, taking only the steepness of the curve across learning blocks into 270 

account, would not capture differences between very good learners, who learned most of the spatial layout 271 

already during familiarization, and very bad learners, with both groups exhibiting flat learning curves. 272 

However, they may differ in the uncertainty of their judgments, which is captured by the dispersion of the 273 

difference distribution. We used a K-means clustering algorithm as implemented in Scikit-learn (Pedregosa et 274 
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al., 2011) to identify the centers of a pre-determined number of clusters based on their distances to the data 275 

points. To obtain the optimal number of clusters to input into the K-means, we varied the number of possible 276 

clusters from 3 to 7 and computed the mean Silhouette Coefficient of all samples per cluster as a measure for 277 

the distance between the resulting clusters with values ranging from -1 to 1 (negative values would indicate 278 

wrong cluster assignments and values near zero overlapping clusters). We found 5 to be the best choice for the 279 

number of learning sub-groups in our sample (respective silhouette scores per tested cluster number: 3: 0.259, 280 

4: 0.395, 5: 0.457, 6: 0.429, 7: 0.410). One should note that the results of this data-driven approach to 281 

characterize the heterogeneity within the two age groups are specific to our sample and cannot be 282 

generalized to the whole population. Different samples of younger and older adults might result in different 283 

learning clusters due to different performance levels. 284 

fMRI Image Quality Control and Preprocessing 285 

The imaging data were first transformed into the Brain Imaging Data Structure (BIDS) format (Gorgolewski et 286 

al., 2016). MRIQC (Version 0.9.3; Esteban et al., 2017) was used for checking the quality of the MRI data. 287 

MRIQC utilizes tools from different software packages such as FSL or Advanced Normalization Tools (ANTs) 288 

to extract image quality metrics (IQMs) and generates visual reports at the individual and group level. This 289 

allows the evaluation of different characteristics of the structural and functional MR images, for example, 290 

SNR/tSNR, sharpness, and presence of artifacts. Data from one younger adult and two older adults were 291 

consequently excluded from further analyses due to strong task-related movement and/or artifacts in several 292 

functional runs resulting in low-quality IQMs (e.g., high Ghost-to-Signal ratio, low tSNR). Next, motion 293 

correction, slice timing, co-registration, and normalization of the images was performed using fMRIprep 294 

version 1.0.0-rc5 (Esteban et al., 2019) that also draws on different software packages to provide the optimal 295 

implementation for different stages of preprocessing. For example, normalization to MNI space was 296 

performed using ANTs as a state-of-the-art medical image registration and segmentation toolkit. Finally, the 297 

data were smoothed with a 6 mm full-width at half maximum isotropic Gaussian kernel using SPM 12 298 

(Wellcome Department of Imaging Neuroscience, London, UK). 299 

ROI Definition  300 

Based on results from previous studies (Wolbers and Büchel, 2005; Auger et al., 2015; Mao et al., 2018), we 301 

defined two regions of interest (ROI), namely, the RSC/POS and the hippocampus. The single ROIs were 302 

created based on each participant’s T1 structural scan using a semiautomated anatomic reconstruction and 303 

labeling procedure as implemented in FreeSurfer v6.0.0 (http://surfer.nmr.mgh.harvard.edu; Dale et al., 1999; 304 

Fischl et al., 1999). In each hemisphere, labels corresponding to the posterior-ventral part of the cingulate 305 

gyrus (area 10) and the parieto-occipital sulcus (area 65) from the Destrieux Atlas and the hippocampus from 306 

the subcortical segmentation were extracted (Fischl et al., 2002; Destrieux et al., 2010). The two cortical labels 307 

were combined into one RSC/POS ROI. Each ROI was next transformed to MNI space. Hemispheres were 308 

combined to one bilateral ROI, thresholded at 0.5, and finally resampled to correspond to the resolution of our 309 

functional images. The ROIs were subsequently used in the univariate analysis and for the volumes of interest 310 

(VOI) extraction in the effective connectivity analysis. In our definition of the hippocampus ROI, we did not 311 

separate between anterior and posterior hippocampus because previous fMRI studies have not reported a 312 
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clear dissociation along the hippocampal long axis during navigation in healthy aging. Hence, strong a-priori 313 

hypotheses about a potential anterior-posterior dissociation seemed unwarranted. Distinctions between 314 

anterior or posterior hippocampus in the results presentation refer to the location of the clusters we obtained 315 

in our analyses with foci at or anterior to y = -21 mm in MNI space being regarded as belonging to the anterior 316 

hippocampus (Poppenk et al., 2013). 317 

fMRI Univariate Analysis 318 

At the single-subject level, a general linear model (GLM) was specified with six regressors of interest for each 319 

learning block using a high-pass filter of 100 Hz. For the navigational as well as control retrieval trials, we 320 

created regressors for the 4 s travel phase and the pointing phase. For the encoding phases, regressors 321 

modeled periods when participants were located within 20 m of the intersection centers (corresponding to the 322 

area covered during the retrieval travel phases) as well as outside of these areas. Finally, the time of the 323 

button press was modeled as regressor of no interest. All regressors were convolved with the standard 324 

canonical hemodynamic response function (HRF) in SPM12. In addition, we included motion parameters, the 325 

frame-wise displacement (FD) and aCompCor values (Behzadi et al., 2007), as obtained from fMRIprep 326 

preprocessing, in the GLM to control for physiological and movement confounds. In aCompCor, significant 327 

principal components are derived from noise regions-of-interest (ROI) in which the time series data are 328 

unlikely to be modulated by neural activity. In this way, potential confounding effects of physiological 329 

fluctuations that may differ between age groups, such as cardiac pulsations and respiration-induced 330 

modulations, are removed from the fMRI time-series.  331 

We focused on interaction effects between conditions of interest and age group that are unlikely to 332 

be driven by group differences in neurovascular coupling, unlike main effects of age (Rugg and Morcom, 2005; 333 

see also Grinband, Steffener, Razlighi, & Stern, 2017). First, we contrasted navigational retrieval trials to 334 

control trials to identify general activation patterns in the RSC/POS and the hippocampus during spatial 335 

navigation in our complex real-world environment, similar to previous studies investigating age-group 336 

differences in spatial navigation (Moffat et al., 2006). We additionally contrasted the travel phases towards 337 

the intersections during navigational retrieval trials to the corresponding periods when participants 338 

encountered the same areas during the encoding tours. The within-subject effects of learning were assessed 339 

by using the normalized differences between learning state estimates (i.e., the outputs from the Bayesian 340 

state-space model) from consecutive learning blocks (i.e., amount of learning) as contrast weights over the 341 

regressors modeling each travel phase during navigational retrieval per learning block (cf., Wolbers and 342 

Büchel, 2005). At the group level, the resulting individual contrast images were entered into two-sample t-343 

tests to assess interactions with age group. Finally, in order to check in which regions activity changes across 344 

learning blocks are modulated by the overall learning ability of the individual, we ran an additional analysis in 345 

which learning sub-group was added as covariate in the age-group comparisons at the second-level. All 346 

contrasts were evaluated at p < .001 (uncorrected) and we report activations that survived the FWE-correction 347 

for multiple comparisons using a threshold of p < 0.05 at the cluster level. 348 

In a control analysis, we checked whether learning-related changes within the two ROIs could 349 

alternatively be driven by spatial computations in which older and younger adults engage in differently over 350 
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the course of the experiment. We fitted a separate finite impulse response (FIR) GLM for each participant with 351 

the same regressors of interest as in our main GLM described above. The FIR model was set up with eight time 352 

bins (2 s duration each, total time window:16 s) as a basis function for the HRF, and FIR time courses (percent 353 

signal change per time bin) were extracted within both the hippocampus and the RSC/POS ROIs for the 354 

regressors modeling the eight travel phases using MarsBar (Brett et al., 2002). For each participant, we then 355 

determined the time bin when the HRF reached its peak, separately for the beginning of learning (first four 356 

learning blocks) and the end of learning (last four learning blocks). This approach allowed us to test (i) whether 357 

the HRF reached its peak at different time points in the first vs. the second half of the experiment, and (ii) 358 

whether this time-to-peak differed between age groups. 359 

Effective Connectivity Analysis 360 

Effective connectivity within and between the hippocampus and the POS was examined using the parametric 361 

empirical Bayesian (PEB) approach in the context of Dynamic Causal Modeling (DCM) as implemented in 362 

SPM12 (Friston et al., 2016).  363 

GLM and VOI Selection. For the DCM analysis, we created a GLM in which the time-series from our three 364 

functional runs were concatenated and added regressors that modeled the mean signal for each run. The 365 

amount of learning per learning block was included as parametric modulation of the regressor modeling the 366 

travel phase during navigational retrieval trials for each participant. All other regressors were the same as in 367 

the first GLM although they were not modeled separately for each learning block. The sanity check of the 368 

concatenated GLM revealed that activity in the right anterior hippocampus (27, -9, -15, Z = 3.97; 27 voxels) 369 

decreased and activity in the left POS (-12, -63, 31, Z = 3.56; 42 voxels) increased with the amount of learning 370 

in younger adults (p < 0.05, FWE-corrected for the respective ROI). No additional activations emerged 371 

elsewhere in the brain. When testing for interactions between learning-related activity changes and age group 372 

within our ROIs, one cluster within bilateral POS extending to RSC was revealed (15, -66, 44, Z = 4.23; 12, -57, 373 

4, Z = 4.21; -6, -66, 24, Z = 3.94; -15, -60, 28, Z = 3.61; 369 voxels). Thus, activity in this region increased with 374 

learning in younger adults but less so in older adults. The slight differences of these results to the ones from 375 

the first GLM are likely related to differences in the design of the two GLMs. Whereas the first GLM was 376 

optimized to capture our experimental design as precisely as possible by modeling all regressors of interest 377 

separately for each learning block, the concatenated GLM was optimized for the DCM analysis that relies on 378 

single-run time-series. 379 

BOLD time-series were extracted for each individual using a t-contrast over the regressors modeling 380 

the travel phase during navigational retrieval and the amount of learning with a liberal threshold of p < 0.1 381 

(Note that this threshold was only used for VOI selection, but not in the final DCM statistics). The principal 382 

eigenvariate was extracted around the group peak coordinates within the hippocampus and POS as obtained 383 

in the univariate analysis of the concatenated GLM and was allowed to vary as an 8 mm sphere centered on 384 

the subject-specific maximum constrained by a 24 mm sphere centered on the group maximum and the 385 

respective ROI mask. In this way, variation between individuals in the exact location of the effect was 386 

considered, given the high heterogeneity in our sample and slightly different peak voxels in the two GLMs. 387 

The extractions were corrected using an F-contrast that retained the effects of interest (navigational as well as 388 
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control retrieval phases, encoding phases, button press) while partitioning out task-unrelated variance caused 389 

by head motion, for example. For participants for which no supra-threshold voxels were identified (three 390 

younger adults and one older adult), the threshold was lowered to p < 0.5 to extract BOLD time-series (cf., 391 

Zeidman et al., 2019b). 392 

First-Level DCM Specification. We specified a bilinear, one-state DCM for each participant by setting the 393 

regressor modeling the travel phase during navigational retrieval trials as driving input entering the cortical 394 

network via the POS. The amount of learning per learning block was included as modulatory input on the 395 

bidirectional connections between hippocampus and POS. All inputs were mean-centered so that the A-396 

matrix of the DCM represents the average connectivity across experimental conditions. We used stochastic 397 

DCM that seeks to improve model estimation by modeling random fluctuations and hidden neuronal causes in 398 

the differential equations of the neuronal states (Li et al., 2011; Daunizeau et al., 2012). In this way, the impact 399 

of potential confounding effects of variations in BOLD response caused by age is reduced. Bayesian group 400 

inversion was performed, providing estimates of the connection strength parameters that best explained the 401 

observed data per participant. Critically, within DCM PEB, at each iteration of the within subject inversion, the 402 

individual priors are updated using the group average connection strengths as priors. Inspection of the single 403 

DCMs after inversion confirmed that our full model provided good fit to the observed data with an average of 404 

44.5 ± 3.22% variance explained. 405 

Second-Level PEB Model. Next, we created a second level PEB model over the parameters that included the 406 

group mean and age group as covariates to identify differences between younger and older adults. We further 407 

included learning sub-group and its interaction with age group as covariates in the model. The interaction 408 

term was modelled as the two main effects of age and learning group element-wise multiplied with the main 409 

effects being mean-centered and coded in a way that low/negative values represent younger or better 410 

performing individuals. A search over nested PEB models was performed by using Bayesian model comparison 411 

(BMC) that explores a space of models under the assumption that different combinations of the connections 412 

may exist across participants (Zeidman et al., 2019a). To search over hundreds of nested models incorporating 413 

different combinations of connections and group differences, Bayesian model reduction (BMR) was used that 414 

iteratively prunes parameters from the full model until model-evidence decreases. To reduce dilution of 415 

evidence, we separately checked for group differences in the A-matrix (average connectivity across 416 

experimental conditions) and the B-matrix (within-subject modulatory input of the amount of learning per 417 

block). We further performed a LOO cross-validation to check whether the model parameter that differed 418 

between older and younger adults could be used to predict the participants’ age group. 419 

Data Availability 420 

Source data files for the main results figures and tables are stored at https://osf.io/fjbxu/. We additionally 421 

provide a key resources table listing all the software packages that were used in the current study. The Stan 422 

code of the Bayesian state-space model can be found in Figure 2-1. 423 

RESULTS 424 
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Findings are reported from two separate samples comprising healthy younger and older adults who 425 

performed a spatial learning task either purely behaviorally (17 younger adults and 17 older adults) or in a 426 

combined fMRI-behavioral experiment (25 younger adults and 32 older adults). In both experiments, following 427 

an initial familiarization phase before testing/outside of the scanner, eight learning blocks were implemented 428 

during which eight retrieval phases alternated with seven encoding phases. We used the angular deviation of 429 

the participants’ response from the respective target landmark (i.e., absolute pointing errors) to measure 430 

performance improvements across learning blocks. However, performance in these kinds of tasks can be 431 

corrupted by various noise sources and, hence, might not accurately reflect the actual learning state of the 432 

participant. Therefore, subject-specific improvements in navigational performance were estimated by using a 433 

Bayesian implementation of a state-space model that disambiguated learning from random trial-by-trial 434 

fluctuations in performance. We used the outputs of the model in the analysis of the fMRI data to examine 435 

intra- and interindividual differences in learning. 436 

Behavioral experiment 437 

Lower performance and reduced learning in older adults  438 

An ANOVA with learning block (1-8) as repeated measures variable and age-group (younger adults, older 439 

adults) as between-subjects variable on the average absolute pointing errors showed significant main effects 440 

of learning block, F(7, 224) = 19.5, p < .001, ηp² = .379, and age group, F(1, 32) = 85.2, p < .001, ηp² = .727. This 441 

was modulated by a significant interaction between the two factors, F(7, 224) = 7.40, p < .001, ηp² = .188. At the 442 

beginning, both age groups performed around chance level (90°), even though older adults had spent 443 

significantly more time than younger adults (Mold = 534 s ± 161 s; Myoung = 218 s ± 41.4 s; t(16.9) = -7.63, p < .001, 444 

d = 2.69) in the initial familiarization phase of the experiment, during which they encountered the VE for the 445 

first time. Over the course of the experiment, however, older adults showed lower performance and less 446 

improvement compared to younger adults (Figure 3A). The change in direction from the first to the second 447 

half of the experiment did not have a major effect on this pattern of results as implied by a non-significant 448 

interaction between learning block and age group when directly comparing the fourth and fifth learning block, 449 

F(1, 32) = 1.96, p = .171, ηp² = .058. A separate ANOVA within the older age group on pointing performance per 450 

learning block confirmed that older adults generally improved on the task over time as evidenced by a 451 

significant main effect of learning, F(7, 112) = 2.58, p = .017, ηp² = .139. According to the outputs of the 452 

Bayesian state-space model (Figure 3C, see Figure 3-1A-B for average pointing errors per learning block for 453 

each participant), most of the younger adults learned the spatial layout of the VE very fast, reaching ceiling 454 

performance already after the first few learning blocks. The older adults, in contrast, differed more widely in 455 

their ability to learn. 456 

To investigate potential biases in pointing behavior that might differ between the age groups, such as 457 

an increased tendency to point along streets, circular statistics were applied on the signed pointing error data 458 

relative to each target landmark for every intersection-direction combination. From the 32 age-group 459 

comparisons (4 intersections x 4 directions x 2 target landmarks), only 7 reached significance as determined by 460 

a Watson-Williams test, all p ≤ .047. Older adults showed larger deviation from the correct angle than younger 461 
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adults in 6 of the 7 instances. The direction of the deviations in pointing (e.g., to the left or right relative to the 462 

target landmark), however, varied and none of the effects survived when correcting for multiple comparisons.  463 

Higher uncertainty when viewpoints are changing in older adults 464 

An ANOVA with learning block (1-8) as repeated measures variable and age group (younger adults, older 465 

adults) as between-subjects variable on the response time data confirmed significant main effects of learning 466 

block, F(7, 224) = 9.26, p < .001, ηp² = .225, and age group, F(1, 32) = 10.5, p = .003, ηp² = .247. Compared to 467 

older adults, younger adults responded quicker and showed a steeper decline in response times over time as 468 

revealed by a significant interaction between learning block and age group, F(7, 224) = 4.29, p = .001, ηp² = 469 

.118. Notably, when comparing the fourth and fifth learning blocks, a significant interaction between learning 470 

block and age group was obtained, F(1, 32) = 9.34, p = .004, ηp² = .226. Older but not younger adults showed a 471 

substantial increase in response times in the fifth learning block when the intersections were encountered 472 

from novel directions (Figure 3B). This result cannot be explained by a confound between pointing 473 

performance and required turning at the intersections because the required amount of turning to perform 474 

accurately on the task varied from trial to trial, depending on the specific intersection-direction-target 475 

landmark combination. Moreover, it was kept constant across experiment halves and participants (average 476 

turning direction: 135°). When considering the fourth and fifth block only, the correct turning angle did not 477 

differ between blocks, age groups, or varied between age groups as a function of learning block, all F  3.23, p 478 

 .082, ηp²  .092. Thus, older adults’ representations of the spatial layout of the environment seem to be 479 

more rigidly tied to the sensory input encountered at the beginning of learning, leading to a temporary 480 

uncertainty when viewpoints are suddenly changing.  481 

--- insert Figure 3 here --- 482 

Performance in older adults is partly influenced by their facing direction 483 

Age-related differences in pointing performance depending on the nature of the trials during navigational 484 

retrieval (i.e., respective intersection-direction-target landmark combination) were further analyzed by means 485 

of an ANOVA on the absolute pointing errors with intersection (I1-I4), direction (D1-D4), and target landmark 486 

(town hall, church) as repeated measures variables and age group (younger adults, older adults) as between-487 

subjects variable. A significant interaction between the four factors suggested that the performance of the 488 

age groups was modulated by the respective intersection-direction-target landmark combination 489 

encountered in the VE during retrieval, F(9, 288) = 2.05, p = .034, ηp² = .060. Therefore, follow-up ANOVAs 490 

were conducted within the two age groups separately. In younger adults, a significant main effect of 491 

intersection, F(3, 48) = 6.18, p = .005, ηp² = .279 (Greenhouse-Geißer corrected), showed that performance was 492 

worse when they were located at I4 (M = 48.6° ± 21.9°) as compared to I1 (M = 25.0° ± 19.7°) or I2 (M = 30.6° ± 493 

25.7°), all p ≤ .010 (Bonferroni-corrected). This was modulated by a significant interaction between 494 

intersection and target landmark, F(3, 48) = 11.4, p < .001, ηp² = .416. Pointing errors were smaller in this age 495 

group when they pointed towards the town hall (M = 13.5° ± 14.5°) as compared to the church (M = 36.6° ± 496 

29.3°) at I1, which was the intersection adjacent to the town hall, and vice versa at I3, which was the 497 

intersection adjacent to the church (town hall: M = 45.5° ± 35.5°; church: M = 25.8° ± 26.9°), all t ≥ 3.33, p ≤ 498 
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.004, d ≥ 0.807. The directions from which the intersections were approached did not have an influence on 499 

performance in this age group, all F  1.80, p  .133, ηp²  .101. In older adults, there was also an interaction 500 

between intersection and target landmark, F(3, 48) = 3.38, p = .026, ηp² = .174. When located at I3, pointing 501 

errors were smaller when the target landmark was the adjacent church (M = 73.2° ± 27.4°) as compared to the 502 

town hall (M = 94.2° ± 19.9°), t(16) = 2.73, p = .015, d = 0.662. The corresponding comparison for I1 did not 503 

reach significance, t(16) = 1.12, p = .281, d = 0.271. In addition, there was a significant interaction between 504 

direction and target landmark, F(3, 48) = 3.75, p = .039, ηp² = .190 (Greenhouse-Geißer corrected). Post-hoc t-505 

tests indicated that pointing towards the town hall (M = 80.3° ± 18.1°) tended to be easier as compared to 506 

pointing towards the church (M = 94.5° ± 27.1°) for the older adults when they approached the intersections 507 

from D4 (i.e., facing east), t(16) = 1.96, p = .068, d = 0.475. In contrast, pointing towards the church (M = 69.9° 508 

± 19.6°) tended to be easier than pointing towards the town hall (M = 87.0° ± 23.3°) when they approached the 509 

intersections from D2 (i.e., facing west), t(16) = 1.99, p = .064, d = 0.483. This was modulated by an interaction 510 

between intersection, direction, and target landmark, F(9, 144) = 2.25, p = .022, ηp² = .123. Separate follow-up 511 

ANOVAs for each intersection with direction (D1-D4) and target landmark (town hall, church) as repeated 512 

measures variables revealed for I2 a main effect of direction, F(3, 48) = 5.25, p = .003, ηp² = .247, indicating that 513 

pointing generally seemed to be easier from D2 (i.e., facing west; M = 68.8° ± 32.7°) as compared to D1 (M = 514 

94.0° ± 24.5°) or D4 (M = 95.8° ± 37.1°), that is, when they were facing towards the dead-ends at this 515 

intersection, all p ≤ .054 (Bonferroni-corrected). At I3, a main effect of target landmark indicated that pointing 516 

towards the adjacent church (M = 73.2° ± 27.4°) was easier for the older adults than pointing towards the town 517 

hall (M = 94.2° ± 20.0°), F(3, 48) = 7.47, p = .015, ηp² = .318. This was modulated by an interaction between 518 

direction and target landmark, F(3, 48) = 4.44, p = .008, ηp² = .217. Pointing towards the church was easier 519 

when coming from D1 (i.e., facing south; town hall: M = 107.7° ± 31.5°; church: M = 65.6° ± 36.0°) or D2 (i.e., 520 

facing west; town hall: M = 98.0° ± 39.4°; church: M = 52.6° ± 40.8°), all t ≥ 3.19, p ≤ .006, d ≥ .773. Finally, at I4, 521 

there was also an interaction between direction and target landmark, F(3, 48) = 3.74, p = .017, ηp² = .190. 522 

Performance was better when participants pointed towards the church (M = 75.9° ± 30.8°) as compared to the 523 

town hall (M = 106.6° ± 31.4°) when approaching the intersection from D2 (i.e., facing west), t(16) = 2.59, p = 524 

.020, d = .629. 525 

To summarize, the results of this analysis again demonstrate better navigational encoding in younger 526 

adults and a higher reliance on the specific sensory input in older adults. The directions from which the older 527 

adults were approaching the intersections partly seemed to have an impact on their performance, although 528 

variability in performance was generally quite high. 529 

Individual learning state and response time increase after direction change predict age-group 530 

We next used a logistic regression model to check whether age-group can be determined based on two 531 

features that characterized age-related performance differences in our task. The mean amount of learning 532 

across the whole experiment (i.e., difference between individual learning state estimates from consecutive 533 

learning blocks) and the change in response times from the 4th to the 5th learning block served as input 534 

features. The model performed very well to estimate the probability of being classified as a younger adult with 535 

an average area under the curve (AUC) of 0.99±0.02%. Thus, those participants with a higher probability of 536 
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belonging to the younger age group show better performance on the task while a higher probability of being 537 

in the older age group relates to poorer navigational performance, i.e., a lower mean amount of learning 538 

across blocks and a higher increase in response times when previously learned locations are encountered from 539 

novel viewpoints (Figure 3D). 540 

fMRI experiment 541 

After pre-processing of the fMRI data using fmriprep (Esteban et al., 2019) and SPM12, we performed a 542 

univariate regression analysis to identify age-related differences in neural activity in the RSC/POS and the 543 

hippocampus during different phases of the experiment. We further examined the effects of learning at the 544 

within- and between-subject level. Finally, we examined age- and learning-related differences in effective 545 

connectivity within and between the two regions. 546 

Learning ability varies within the older age group  547 

As in the behavioral experiment, older compared to younger adults spent considerably more time in the initial 548 

familiarization phase of the experiment outside of the scanner (Mold = 466 s ± 133 s; Myoung = 258 s ± 57.5 s; 549 

t(44.3) = -7.91, p < .001, d = 2.03. Moreover, we found significant main effects for learning block, F(7, 385) = 550 

32.3, p < .001, ηp² = .370, and age group, F(1, 55) = 167, p < .001, ηp² = .752, together with a significant 551 

interaction between the two factors for the average absolute pointing errors, F(7, 385) = 11.0, p < .001, ηp² = 552 

.166. This indicates that younger compared to older adults again showed better performance on the task and 553 

stronger improvement across learning blocks (Figure 4A). Older adults, however, did show learning at the 554 

group level as confirmed by a separate ANOVA within this age group, F(7, 217) = 3.58, p = .001, ηp² = .103. 555 

Accuracy for the control trials was at ceiling across the whole sample (mean proportion of correct responses = 556 

0.97 ± 0.05). In contrast to the behavioral experiment, the change in directions from the first to the second half 557 

of the experiment was omitted here due to the reduced number of trials per learning block. Thus, we did not 558 

expect changes in response times from the first to the second half of the experiment.  559 

Individual learning state estimates as obtained from the state-space model again showed that 560 

participants varied substantially in their ability to learn the spatial layout of the VE (Figure 4B, see also Figure 561 

3-1C-D for average pointing errors per learning block for each participant). To determine how neural activation 562 

patterns were modulated by the individuals’ overall amount of learning across the experiment, we used a K-563 

means clustering algorithm to identify learning sub-groups based on the difference between the latent state 564 

distributions of the last and first learning block. The estimated optimal number of clusters in our sample 565 

turned out to be five (Figure 4C): A group of top learners (n = 9), consisting of seven younger adults and two 566 

older adults, already learned the layout of the VE after the familiarization phase resulting in a small difference 567 

in learning between the first and the last learning block. The second cluster exclusively consisted of younger 568 

adults, categorized as good learners (n = 14). They typically reached ceiling performance during the first half of 569 

the experiment with a low variance in their difference distribution. A group of intermediate learners (n = 9), 570 

consisting of a three younger and six older adults, were still improving in the second half of the experiment 571 

and consequently exhibited the largest difference in their hidden learning state from the beginning to the end 572 

of the experiment and a relatively high variance. Individuals belonging to the fourth cluster were categorized 573 

as weak learners (n = 12) who showed only a small improvement across the whole experiment and a high 574 
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variability. This cluster consisted of older adults only. Finally, 12 older adults and one younger adult did not 575 

show considerable improvement across the learning blocks and were consequently categorized as non-576 

learners (n = 13) in the context of our experiment. Difference distributions for representative individuals from 577 

each learning sub-group, together with learning estimates and behavioral data per learning block, can be 578 

found in Figure 4-1. Although these results are specific to our sample, the same clustering analysis within the 579 

behavioral experiment yielded comparable results in terms of the number of learning sub-groups, 580 

underscoring the validity of its results in the context of our task (see Figure 4-2). 581 

These between-subject differences in learning demonstrate that our task was neither too easy nor 582 

too difficult for one of the age groups per se. In addition, the learning sub-groups within each age group were 583 

comparable with respect to the factors age, sex or signs of major cognitive impairment (Figure 4-3). 584 

--- insert Figure 4 here --- 585 

Age-related hyperactivation in the hippocampus and RSC/POS during navigational retrieval 586 

First, to identify overall age-related differences in activation patterns within the RSC/POS and the 587 

hippocampus, irrespective of learning, we contrasted navigational retrieval trials to control trials. Activity in 588 

medial parts of the RSC/POS was increased in older compared to younger adults for this comparison. This age-589 

related activity increase was also observed in the left anterior hippocampus (Table 1A). An age-related activity 590 

reduction was found in a small cluster in the superior right POS and also in a more lateral cluster in the right 591 

POS (Table 1B). Second, we tested for interactions between age group and activation differences during 592 

navigational retrieval versus encoding to check whether these two phases of the experiment were differently 593 

affected by age. In one cluster of the right POS as well as two clusters in the right and left anterior 594 

hippocampus, activity was increased in older adults compared to younger adults during navigational retrieval 595 

versus encoding (Table 1C). There were no clusters within our ROIs where activity was reduced in older adults. 596 

Activations outside of our ROIs for these two comparisons and the corresponding results for the whole sample 597 

can be found in Table 1-1A-G.  598 

Learning-related activity changes in anterior hippocampus and RSC/POS are less pronounced in older adults 599 

By using the amount of learning per block as contrast weights in our GLM, we assessed learning-related age-600 

group differences in the time-course of hippocampal and RSC/POS involvement during navigational retrieval. 601 

First, we found that activity in the anterior portion of the right hippocampus decreased in younger but less so 602 

in older adults as a function of learning (Table 1D, Figure 5A). This suggests that hippocampal activity 603 

reflected the amount of spatial knowledge that was acquired after each encoding tour in the younger age 604 

group. In older adults, in contrast, hippocampal activation did not change systematically across learning 605 

blocks. Second, we also found several clusters within the RSC/POS ROI where activity increased over the 606 

course of the experiment more in younger than in older adults (Table 1E, Figure 5B). This concerned the whole 607 

extent of the left POS from its superior parts to the left RSC, a cluster in the right RSC/POS, and a more lateral 608 

cluster in the right POS. Activity in these clusters paralleled changes in performance across learning blocks in 609 

the younger age group. Older adults’ individual learning curves, in contrast, were again decoupled from 610 

activity changes in these regions. Activations outside of our ROIs for these comparisons and the 611 

corresponding results for the whole sample can be found in Table 1-1H-I.  612 
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--- insert Figure 5 here --- 613 

It is possible that the decreasing BOLD responses in the hippocampus and the increasing responses in 614 

RSC/POS, which we observed in younger adults, could have been driven by younger adults becoming quicker 615 

with self-localization, allowing them to compute the direction towards the target landmark at progressively 616 

earlier time points. Under this scenario, one would predict a temporal shift of the BOLD response, in particular 617 

for the RSC (assuming a role of the RSC/POS in deriving directional relationships between one's position and 618 

landmarks). To directly test this hypothesis, we performed a control analysis using a FIR model of the 619 

hemodynamic response but did not find any indications that the time bin of the peak of the HRF changed 620 

between the first and the second half of the experiment, neither in the hippocampus nor in the RSC/POS ROI. 621 

In the hippocampus, the median time bin was 3.75 (IQR = 1.25) in the first and 4.25 (IQR = 1.50) in the second 622 

half of the experiment in younger adults (out of 8 time bins that were modeled with a 2 s duration each). In 623 

older adults, the median in the first half was 4.50 (IQR = 1.44) and 4.50 (IQR = 0.75) in the second half. A two-624 

sample Wilcoxon test confirmed that these differences were not significant in any of the experiment halves (all 625 

p  .106, Bonferroni corrected, all effect sizes r  .262). Similar results were obtained in the RSC/POS ROI with 626 

a median of 4.75 (IQR = 1.00) in the first and 4.50 (IQR = 1.00) in the second half within the younger age group 627 

and 4.50 (IQR = 1.19) in the first and 4.75 (IQR = 1.25) in the second half within the older age group (all p  1.00, 628 

Bonferroni corrected, all effect sizes r  .049). This suggests that the differential hippocampal and RSC/POS 629 

dynamics in the two age groups are unlikely to be driven by changes in the onset/duration of the spatial 630 

computations carried out in the two regions. 631 

Learning-related activity changes across blocks are modulated by inter-individual differences in learning 632 

within older adults 633 

Behavioral performance of older adults varied substantially, with some of them showing hidden learning 634 

states similar to younger adults while others showed very little performance improvements. Therefore, we 635 

next included the individual’s learning sub-group as covariate in the second-level analysis to examine in which 636 

regions learning-related activity changes across blocks differed as a function of the overall learning ability of 637 

the individual. In younger adults, no activations emerged within our ROIs or elsewhere in the brain. In older 638 

adults, however, we found that activity changes in several regions across the entire brain, including visual 639 

cortices, the cerebellum, temporal and frontal cortices, as well as the parahippocampal cortex (PHC) 640 

extending to the anterior hippocampus, were more strongly related to the individual learning curves in better 641 

performing groups (i.e., decreased across learning blocks, Figure 6, Figure 6-1). The learning curves of those 642 

older adults who were less able to learn the layout of the environment, in contrast, were decoupled from 643 

activity changes in these regions. No activations survived our correction for multiple comparisons within our 644 

ROIs or across the whole-brain when testing for the interactions between age group and learning sub-group.  645 

--- insert Figure 6 here --- 646 

Age-related reduction in the inhibitory self-connection of the anterior hippocampus 647 

To check whether age-related problems in spatial learning are related to changes in the intrinsic excitability of 648 

the anterior hippocampus and the RSC/POS or in the coupling between the two regions, we used DCM PEB 649 
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(Friston et al., 2016). DCM has been successfully used to determine effective connectivity changes in the 650 

hippocampus and related regions during memory processing (Gluth et al., 2015). Moreover, DCM PEB offers 651 

several advantages over classical DCM variants in terms of model selection and second-level group 652 

comparisons. First, instead of specifying several models at the first level and comparing their evidence, a full 653 

model is estimated for each participant incorporating all parameters of interest, and Bayesian model 654 

reduction (BMR) is performed to obtain posterior estimates of nested models in which parameters that do not 655 

contribute to the model evidence are pruned. Second, first-level DCMs are equipped with empirical priors that 656 

shrink parameter estimates towards a group mean. In this way, each subject’s contribution to the group PEB 657 

result is weighted by their precision. Third, applying classical inference methods to examine whether certain 658 

parameters differ between groups after model inversion ignores within-subject uncertainty (i.e., variance of 659 

the posterior distributions). This is circumvented in PEB by using the full posterior density over the parameters 660 

from each participant’s DCM to draw inferences about group level effects. 661 

For each participant, we first specified and estimated a DCM between the anterior hippocampus and 662 

the POS using peak coordinates from the corresponding univariate analysis. Navigational retrieval phases 663 

were modeled as driving input into the network via the POS. The amount of learning per block was modeled 664 

as modulatory input on the bidirectional connections between the two regions (Figure 7A). In the second-level 665 

PEB model, we included age group, learning sub-group, and their interaction as covariates to determine their 666 

relative influence on the connection strengths. The left panels in Figure 7 show the group mean of the average 667 

connection strength before (Figure 7B) and after BMR (Figure 7D), indicating that all four parameters were 668 

necessary to explain our data.  669 

With respect to age group differences in connectivity, only one parameter survived BMR (second 670 

panels of Figure 7B and 7D). Specifically, older compared to younger adults had a reduced inhibitory self-671 

connection strength in the anterior hippocampus, i.e., a relative disinhibition in this region. Note that for self-672 

connections in the DCM framework, parameters are expressed as log scaling parameters and that the 673 

regressor representing age group was coded in a way that the resulting parameter is the amount that needs to 674 

be added to the group mean to obtain the older adults’ connection strength (the group mean is obtained by 675 

calculating -0.5Hz * exp(-0.33698) = -0.357Hz and for older adults -0.5Hz * exp(-0.33698 + -0.039719) = -676 

0.3431Hz). Thus, our model provides evidence that the aging hippocampus seems to be more readily excited 677 

by afferent activity from other regions during spatial learning. The interaction between age group and 678 

learning sub-group in this model parameter also survived BMR (right panels in Figure 7B and 7D), indicating 679 

that the hippocampal self-connection strength was more strongly modulated by the overall learning ability of 680 

the individual in the older age group. Inspection of the fourth panel in Figure 7D indicates that the age-related 681 

disinhibition in this region was attenuated in better performing individuals (see also Figure 7C for posterior 682 

probabilities of each parameter). We did not find any modulatory effects of the (within-subject) amount of 683 

learning per block.  684 

We further performed a leave-one-out (LOO) cross-validation using the model parameter denoting 685 

the self-connection strength in the anterior hippocampus to test whether this effect would be large enough to 686 

predict the participants’ age group. In this analysis, all but one subject were used to estimate the model 687 

parameter, which was then used to evaluate the posterior belief of the model parameter in a left-out (test) 688 
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subject. The predicted and actual between-subject effect for each test subject was then compared to derive an 689 

independent out-of-sample correlation, which was 0.29 in the current sample (p=0.01434, Figure 7E). Thus, 690 

the estimated intrinsic connection strength in the anterior hippocampus during spatial learning was large 691 

enough to predict the age group of a new subject above chance level.  692 

--- insert Figure 7 here --- 693 

Summary of the key findings 694 

At the behavioral level, we found in two separate experiments that performance improvements were 695 

considerably reduced in healthy older compared to younger adults, when they were asked to retrieve the 696 

spatial layout of an initially unfamiliar environment. Older adults further showed a higher uncertainty when 697 

familiar locations were experienced from novel viewpoints during learning, as evidenced by a temporary 698 

increase in response times. At the neural level, activity in the anterior hippocampus and RSC/POS changed 699 

dynamically as a function of learning in younger adults, whereas this was not the case in older adults. 700 

Importantly, a DCM PEB analysis revealed that the inhibitory self-connection of the anterior hippocampus was 701 

reduced in older adults and was modulated by the overall learning ability of the individual as evidenced by an 702 

interaction between age group and learning sub-group (see Figure 8 for a graphical summary of the results). 703 

--- insert Figure 8 here --- 704 

DISCUSSION 705 

In two experiments, we show that healthy older adults, on average, have substantial problems in learning to 706 

orient themselves in a novel, city-like virtual environment, in line with previous findings (Iaria et al., 2009; 707 

Yamamoto and DeGirolamo, 2012). At neural levels, we could replicate earlier findings showing that activity in 708 

RSC/POS increased while activity in the anterior hippocampus decreased as a function of learning in younger 709 

adults (Wolbers and Büchel, 2005; Auger et al., 2015; Brodt et al., 2016), which shows that our task is suitable 710 

to measure spatial learning, while using a complex photorealistic VE. In older adults, activity in these two 711 

regions was decoupled from the amount of learning and did not change systematically across repeated 712 

episodes in the environment. Importantly, we provide the first evidence that an increased excitability of the 713 

anterior hippocampus might constitute a potential neural mechanism for cognitive mapping deficits in older 714 

adults.  715 

In the behavioral experiment, we additionally found that older adults had problems when locations 716 

are encountered from novel directions during learning. This might be related to age-related deficits in 717 

distinguishing novel from familiar input (Yassa et al., 2011; Vieweg et al., 2015) and to impairments in 718 

allocentric processing, because Wiener et al. (2013) observed age-related performance declines when 719 

locations were approached from novel directions during route learning. Given that viewpoint transformations 720 

in spatial memory involve hippocampal computations (King et al., 2002), the behavioral results already point 721 

to impaired information processing within the aging hippocampus that affects navigational learning. This 722 

extends findings showing that a reduced sensitivity to changes in the environment might be linked to age-723 
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related impairments in object-location binding and spatial perspective taking (Muffato et al., 2019; Segen et 724 

al., 2020).  725 

In the fMRI experiment, performance relied on the knowledge about the relation between the 726 

participant’s own position and the position of the target landmarks, while the change in viewpoints was 727 

omitted. What neural mechanisms can account for the cognitive mapping deficits in older adults? The 728 

learning-related activity decrease in the anterior hippocampus of younger adults was absent in older adults, 729 

leading to an overall hippocampal hyperactivity. Similar effects have been observed in studies investigating 730 

age-related deficits in pattern separation (Yassa et al., 2011; Reagh et al., 2018), as well as in rodent and non-731 

human primate studies on age-related changes in spatial navigation (Wilson et al., 2005; Thomé et al., 2016). 732 

By examining effective connectivity, we were able to show, for the first time, that an age-related reduction in 733 

the inhibitory self-connection strength of the anterior hippocampus might constitute the underlying neural 734 

mechanism for the elevated signal in this region. Within the context of DCM, self-connection parameters 735 

capture, at a macroscopic level, condition specific changes in the excitatory-inhibitory balance (Friston et al., 736 

2017). Because effective connectivity as inferred using DCM for fMRI is typically polysynaptic, we cannot 737 

determine which class of cells or synapses underlie these effects. In memory-impaired monkeys, increased 738 

firing rates in CA3 place cells have been linked to a reduced number of GABAergic inhibitory interneurons 739 

(Thomé et al., 2016). Whether this is similarly the case in humans and how this is related to AD pathogenesis 740 

are important questions for future research (Bi et al., 2020). 741 

The age effect on the hippocampal self-connection strength was modulated by the learning ability of 742 

the individual, suggesting that an increased hippocampal excitability might impair the formation of spatial 743 

knowledge. Specifically, aberrant activity in the hippocampus could have affected the spatial resolution of the 744 

emerging cognitive maps in older adults, in line with findings showing that (i) hippocampal lesion patients and 745 

healthy older adults are impaired in forming high-resolution spatial representations when navigating novel 746 

environments (Kolarik et al., 2016; Kolarik et al., 2018; Nilakantan et al., 2018), and (ii) that reducing 747 

hippocampal hyperactivity with an anti-epileptic drug that targets excitatory neurotransmission improves 748 

memory performance in amnestic patients (Bakker et al., 2015; see also Koh et al., 2013; Robitsek et al., 2015 749 

for related findings in rodents). Critically, in the context of our task, imprecise cognitive maps will not only 750 

affect self-localization but also the ability to compute allocentric vectors to the target landmarks. The latter 751 

process has also been linked to computations in sub-regions of the MTL (Chadwick et al., 2015; Shine et al., 752 

2019; see also Wang et al., 2018; Høydal Ø et al., 2019). 753 

In addition to hippocampal hyperactivation, older adults also exhibited a lack of learning related 754 

dynamics in RSC/POS. Medial parietal cortex undergoes significant changes during aging, including increased 755 

atrophy and enhanced tau deposition (Jockwitz et al., 2017; Harrison et al., 2019). Moreover, the increased 756 

excitability of the aging hippocampus may impact on information processing in RSC/POS, given the close 757 

reciprocal interactions between both regions. For example, Mao et al. (2018) found that bilateral hippocampal 758 

lesions suppress the gradual emergence of a spatial code in the RSC. In the present study, given that RSC/POS 759 

is assumed to support the anchoring of cognitive maps to external landmarks (Epstein et al., 2017), a deficient 760 

anchoring may compromise older adults’ ability to precisely recover their facing direction and to orient their 761 

cognitive maps when approaching the intersections. Together with the imprecision in the cognitive maps, 762 
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both deficits are likely to contribute to the compromised pointing performance in older adults.  763 

Moreover, this anchoring process should occur in parallel to self-localization in our task, because as 764 

soon as an intersection was visible during navigational retrieval, participants could use the local buildings 765 

and/or the geometric layout to recover both their position and their facing direction. This could explain why – 766 

particularly in younger adults – the latency of the BOLD response in RSC/POS did not change over the course 767 

of the experiment, because the process of reorientation could start immediately at the beginning of a trial. 768 

Our univariate results differ from Moffat et al. (2006) who measured brain activity during encoding of 769 

a virtual maze and reported an age-related hypoactivation in the RSC and the hippocampus. This discrepancy 770 

might be related to the timepoint when activity was measured, because if younger adults were still acquiring 771 

knowledge about the VE, our findings would also predict stronger hippocampal effects compared to older 772 

adults. More generally, this discrepancy highlights the need to track the learning status of an individual when 773 

interpreting differences in (hippocampal) BOLD responses between groups. In addition, it is important to note 774 

that we focused on hemodynamic changes during retrieval in our study. Thus, overall task demands could be 775 

another factor that might have contributed to our findings, because we also observed an age-related activity 776 

increase in RSC/POS and hippocampus when contrasting retrieval to encoding.  777 

Performance in our task was highly variable. While some older adults learned the layout of the 778 

environment as quickly as younger adults, others showed continuous learning, learned very slowly, or were 779 

not able to retrieve relevant information to perform the task. During MRI scanning, the amount of exposure in 780 

the VE was kept constant for all participants. This allowed us to replicate earlier findings in younger adults and 781 

to use this as a baseline against which we could compare the results of the older adults. Therefore, we cannot 782 

determine whether low-performing older adults would just need more time for learning. However, it seems 783 

unlikely that all of them would have reached the same performance level as younger adults if provided with 784 

more time in the VE, because older adults already spent considerably more time in the initial familiarization 785 

phase of the experiments. Using machine learning methods on MRI data of hundreds of older adults, Eavani et 786 

al. (2018) described multiple phenotypes of brain agers that are characterized by specific functional and 787 

structural changes. The authors described one phenotype that displays atrophy in the hippocampus, 788 

decreased coherence in posterior medial parietal cortex, and an increased connectivity in the MTL. Thus, older 789 

adults who show an increased excitability of the anterior hippocampus might be particularly impaired in 790 

memorizing novel spatial environments.  791 

Finally, by forming sub-groups of learners based on their estimated learning states and by including 792 

this information in the fMRI analysis, we found that activity changes in several brain regions were decoupled 793 

from the individual learning curves in those older adults who had more problems to learn. Although these 794 

results should be interpreted with caution given the small sample sizes of our groups, they provide further 795 

indications that hyperactivity in the aging brain does not seem to support task performance (Morcom and 796 

Henson, 2018). We did not find any indications that the learning differences within older adults were related to 797 

their age, sex, or their cognitive screening scores. Thus, future studies should apply additional measures, for 798 

example preclinical markers for AD, to further characterize age-related deficits in spatial learning and, 799 

specifically, why these abilities are preserved in some older adults. 800 
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Taken together, increased excitability of the anterior hippocampus, together with aberrant RSC/POS 801 

functioning, provides a novel explanation why older adults experience problems with forming accurate spatial 802 

representations of a novel environment. In addition, our findings add to a growing body of evidence 803 

associating hyperactivity in the hippocampus to memory impairments in aging. 804 
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FIGURE LEGENDS 980 

Figure 1. Spatial learning task.  981 

(A) Procedure of the fMRI experiment. After a familiarization phase outside of the scanner, eight retrieval 982 

phases, each comprising 8 navigational retrieval trials and 4 control trials, alternated with 7 encoding phases 983 

during scanning. In the behavioral experiment, the structure was the same except that 12 navigational 984 

retrieval trials per learning block were completed while the control trials were omitted. (B) Layout of the 985 

virtual environment (VE). The VE resembled a typical German historic city center and consisted of four 986 

interconnected intersections (I1-I4) that could be reached from 4 directions (D1-D4). At two intersections, a 987 

town hall (T1) and a church (T2) were placed at the end of one of the outgoing streets that served as target 988 

landmarks in the navigational retrieval trials. Yellow arrows exemplify one encoding tour that started from 989 

one of the target landmarks in clockwise or counterclockwise direction (a short segment of one tour is shown 990 

in Video 1). (C) Structure of one example navigational retrieval trial to measure spatial learning. After fixation, 991 

participants were passively transported towards one of four intersections in the VE starting from one of the 992 

four streets leading towards that intersection (see Video 2). Movement stopped at the center of the 993 

intersection, a red crosshair appeared, and participants were asked to move the crosshair in the direction of 994 

the respective target landmark. During the entire duration of the trial, a picture cue of the target landmark 995 

was displayed at the bottom of the screen, and the background was obscured by fog to prevent seeing the 996 

target landmarks. In the fMRI experiment, an additional jittered interval of 1 s (still phase) was added after the 997 

travel phase/before the crosshair appeared on screen. 998 

Figure 2. Bayesian state-space model to estimate the subject-specific hidden learning state per learning block 999 

(see Figure 2-1 for the model code). Results of the posterior predictive checks of the model for representative 1000 

individuals from each learning sub-group in the fMRI experiment and a histogram of the individuals’ loo 1001 

differences for the comparison of the Bayesian state-space model to an alternative model that estimated the 1002 

individuals’ learning state trial-wise is depicted in Figure 2-2. 1003 

Figure 3. Performance data in the behavioral experiment.  1004 

(A) Average absolute pointing errors and (B) response times across the eight learning blocks in older (solid 1005 

line) and younger adults (dashed line; highlighted in grey is the 4th and 5th learning block where the change in 1006 

directions took place from which the intersections were approached). Error bars denote standard errors of the 1007 

means (SE). See also Figure 3-1A-B for average pointing errors per learning block for each participant in each 1008 

age group. (C) Mean estimated performance improvement (hidden learning state) of each participant in the 1009 

older (orange) and younger (grey) age group, including the standard deviation (SD) of the posterior 1010 

distributions (shaded area) across learning blocks. (D) Logistic regression results classifying age group 1011 

membership based on two behavioral performance features, i.e., the mean amount of learning across the 1012 

experiment and the increase in response times after the first half of the experiment. Shaded lines depict the 1013 

probability of being classified as a younger adult. 1014 

Figure 4. Performance data in the fMRI experiment.  1015 
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(A) Average absolute pointing errors across the eight learning blocks in older (solid line) and younger adults 1016 

(dashed line). Error bars denote standard errors of the means (SE). See also Figure 3-1C-D for average pointing 1017 

errors per learning block for each participant in each age group. (B) Mean estimated performance 1018 

improvement (hidden learning state) of each participant in the older (orange) and younger (grey) age group, 1019 

including the standard deviation (SD) of the posterior distributions (shaded area) across learning blocks. (C) 1020 

Learning sub-groups as identified by a K-means clustering algorithm based on the individuals’ overall amount 1021 

of learning and its SD, as determined by the difference of the latent state distributions of the last and first 1022 

learning block. See Figure 4-1 for difference distributions, learning state estimates, and performance data per 1023 

learning block for representative individuals from each learning sub-group and Figure 4-2 for the results of the 1024 

same clustering analysis within the sample of the behavioral experiment. 1025 

Figure 5. Interaction effects between age group and the amount of learning per block during navigational 1026 

retrieval. Age-related differences in (A) hippocampal  activity decreases and (B) RSC/POS activity increases 1027 

across the experiment. Activations are displayed on the 2009 nonlinear asymmetric MNI template that was 1028 

used for normalization (p < 0.05, FWE-corrected for the respective ROI). Plots depict average parameter 1029 

estimates of the respective peak voxels per learning block in selected clusters for each age group. Error bars 1030 

indicate the across-subject standard error of the mean. See Table 1 for the spatial coordinates of the local 1031 

maxima in the hippocampus and RSC/POS ROIs and Table 1-1 for significantly activated clusters elsewhere in 1032 

the brain.  1033 

Figure 6. Differential activity changes in relation to the amount of learning per block between learning sub-1034 

groups in the older age group. Activations are displayed on the 2009 nonlinear asymmetric MNI template that 1035 

was used for normalization (p < 0.05, FWE-corrected). See Figure 6-1 for the spatial coordinates of the local 1036 

maxima. 1037 

Figure 7. Results of the DCM PEB analysis. (A) First-level DCM specification to determine average connectivity 1038 

within and between anterior hippocampus and POS. Navigational retrieval phases were modeled as driving 1039 

input entering the cortical network via the POS, and the amount of learning per block was included as 1040 

modulatory input on the bidirectional connections between the regions. Estimated Parameters (1: self-1041 

connection POS, 2: POS – hippocampus connection, 3: hippocampus – POS connection, 4: self-connection 1042 

hippocampus) (B) before and (D) after Bayesian model reduction (BMR) for each covariate (age group, 1043 

learning group, interaction between age group and learning group) in the second-level PEB model. Grey bars 1044 

represent parameter means and pink lines their 95% confidence intervals. The parameters for self-connections 1045 

(parameter 1 and 4) are expressed as log scaling parameters that can be converted to Hz using x_Hz = -0.5 * 1046 

exp(x) whereby x is the log scaling parameter and -0.5 Hz the prior. (C) Posterior probabilities per parameter 1047 

for each second-level covariate after BMR, (E) Predicted age group of each participant as derived from a LOO 1048 

cross-validation scheme based on the estimated self-connection strength in the anterior hippocampus. 1049 

Figure 8. Key findings of the two experiments. 1050 

Video 1. Exemplary segment of one of the tours through the virtual environment in the encoding phases of 1051 

the two experiments. 1052 
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Video 2. Example for a pointing trial in the retrieval phases of the two experiments. 1053 
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TABLES 1054 

Table 1. Spatial coordinates of the local maxima in the hippocampus and RSC/POS ROIs in the fMRI analyses 1055 

on age-related differences in neural activation patterns (p < 0.05, FWE-corr.). See Table 1-1 for significantly 1056 

activated clusters elsewhere in the brain.  1057 

 Brain region Cluster size MNI coordinate      Z-score 

  x y z  

A) Increased activity in older compared to younger adults during navigation vs. control 

 L POS 83 -3 -60 34 4.56 

 L RSC  -6 -57 21 4.32 

 L Hippocampus 72 -21 -18 -12 4.76 

   -30 -15 -22 4.21 

B) Reduced activity in older compared to younger adults during navigation vs. control 

 R POS 22 12 -69 54 4.00 

   18 -69 57 3.94 

   15 -75 51 3.25 

 R POS 55 27 -60 24 3.96 

C) Increased activity in older compared to younger adults during retrieval vs. encoding 

 R POS 27 12 -51 34 4.03 

 L Hippocampus 33 -30 -15 -15 4.08 

 R Hippocampus 20 24 -12 -12 3.97 

D) Age-group differences in learning-related  activity decreases 

 R Hippocampus 20 24 -18 -15 4.55 

E) Age-group differences in learning-related  activity increases 

 L POS 462 -9 -66 24 5.93 

   -24 -72 47 5.37 

 L RSC  -18 -57 1 4.14 

   -6 -63 11 3.98 

 R POS 148 24 -69 47 4.95 

   21 -72 54 4.73 

 R RSC 205 9 -57 4 4.82 

   9 -63 21 4.59 

 1058 
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TABLE AND FIGURE LEGENDS 1 

Table 1-1, related to Table 1 and Figure 5: Spatial coordinates of the local maxima in the whole-brain fMRI analyses on 2 

age-related differences in neural activation patterns (p < 0.05, whole-brain FWE-corr.). 3 

Figure 2-1, related to Figure 2 and Bayesian Modeling of Performance Data section: Stan code of the Bayesian state-4 

space model. 5 

Figure 2-2, related to Figure 2 and Bayesian Modeling of Performance Data section: Results of the posterior predictive 6 

checks of the Bayesian state-space model for representative individuals from each learning sub-group (A: top learner 7 

young – E: non-learner old; see Performance Clustering section; the posterior predictive samples distribution, yrep, plotted 8 

together with the observed data points, y, per learning block) and (F) histogram of the individuals’ loo differences for the 9 

comparison of the Bayesian state-space model incorporating the effects of the responses, η, to an alternative model that 10 

estimated the individuals’ learning state trial-wise. More positive values indicate a better fit of the first model. 11 

Figure 3-1, related to Figure 3 and 4: Average absolute pointing errors per learning block for each participant in (A) the 12 

younger and (B) the older age group in the behavioral experiment, and for each participant in (C) the younger and (D) the 13 

older age group in the fMRI experiment.  14 

Figure 4-1, related to Figure 4 and Performance Clustering section: Definition of learning sub-groups. Hidden learning 15 

states (including SD) and trial-wise performance data per learning block (left) and the latent state distributions of the last 16 

and first learning block plotted together with the difference distribution (right) from representative individuals from each 17 

learning sub-group in the fMRI experiment. 18 

Figure 4-2, related to Figure 4 and Performance Clustering section: Learning sub-groups in the behavioral experiment as 19 

identified by a K-means clustering algorithm based on the individuals’ overall amount of learning and its SD, as 20 

determined by the difference of the latent state distributions of the last and first learning block. Results are shown for (A) 5 21 

and (B) 6 learning clusters that yielded similar silhouette scores (respective mean silhouette scores per tested cluster 22 

number: 3: 0.232, 4: 0.293, 5: 0.400, 6: 0.404, 7: 0.370). 23 

Figure 4-3, related to Figure 4 and Performance Clustering section: Key demographics of the learning sub-groups within 24 

each age group in the fMRI experiment. 25 

Figure 5-1, related to Figure 5 and Table 1: Spatial coordinates of the local maxima in the whole-brain fMRI analyses on 26 

age-related differences in neural activation patterns (p < 0.05, whole-brain FWE-corr.). 27 

Figure 6-1, related to Figure 6: Spatial coordinates of the local maxima in the fMRI analyses on inter-individual 28 

differences in neural activation patterns across learning blocks within older adults (p < 0.05, FWE-corr.). 29 
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